SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(AMNE:(Microbiology in the medical area)) pers:(Elofsson Mikael) "

Sökning: (AMNE:(Microbiology in the medical area)) pers:(Elofsson Mikael)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Strand, Mårten, 1982- (författare)
  • The discovery of antiviral compounds targeting adenovirus and herpes simplex virus : assessment of synthetic compounds and natural products
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • There is a need for new antiviral drugs. Especially for the treatment of adenovirus infections, since no approved anti-adenoviral drugs are available. Adenovirus infections in healthy persons are most often associated with respiratory disease, diarrhea and infections of the eye. These infections can be severe, but are most often self-limiting. However, in immunocompromised patients, adenovirus infections are associated with morbidity and high mortality rates. These patients are mainly stem cell or bone marrow transplantation recipients, however solid organ transplantation recipients or AIDS patients may be at risk as well. In addition, children are at higher risk to develop disseminated disease.Due to the need for effective anti-adenoviral drugs, we have developed a cell based screening assay, using a replication-competent GFP expressing adenovirus vector based on adenovirus type 11 (RCAd11GFP). This assay facilitates the screening of chemical libraries for antiviral activity. Using this assay, we have screened 9800 small molecules for anti-adenoviral activity with low toxicity. One compound, designated Benzavir-1, was identified with activity against representative types of all adenovirus species. In addition, Benzavir-1 was more potent than cidofovir, which is the antiviral drug used for treatment of adenovirus disease. By structure-activity relationships analysis (SAR), the potency of Benzavir-1 was improved. Hence, the improved compound is designated Benzavir-2. To assess the antiviral specificity, the activity of Benzavir-1 and -2 on both types of herpes simplex virus (HSV) was evaluated. Benzavir-2 displayed better efficacy than Benzavir-1 and had an activity comparable to acyclovir, which is the original antiviral drug used for therapy of herpes virus infections. In addition, Benzavir-2 was active against acyclovir-resistant clinical isolates of both HSV types.To expand our search for compounds with antiviral activity, we turned to the natural products. An ethyl acetate extract library was established, with extracts derived from actinobacteria isolated from sediments of the Arctic Sea. Using our screening assay, several extracts with anti-adenoviral activity and low toxicity were identified. By activity-guided fractionation of the extracts, the active compounds could be isolated. However, several compounds had previously been characterized with antiviral activity. Nonetheless, one compound had uncharacterized antiviral activity and this compound was identified as a butenolide. Additional butenolide analogues were found and we proposed a biosynthetic pathway for the production of these compounds. The antiviral activity was characterized and substantial differences in their toxic potential were observed. One of the most potent butenolide analogues had minimal toxicity and is an attractive starting point for further optimization of the anti-adenoviral activity.This thesis describes the discovery of novel antiviral compounds that targets adenovirus and HSV infections, with the emphasis on adenovirus infections. The discoveries in this thesis may lead to the development of new antiviral drugs for clinical use. 
  •  
2.
  •  
3.
  • Johansson, Emil, 1985-, et al. (författare)
  • Exploring the effect of structure-based scaffold hopping on the inhibition of coxsackievirus a24v transduction by pentavalent n-acetylneuraminic acid conjugates
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Coxsackievirus A24 variant (CVA24v) is the primary causative agent of the highly contagious eye infection designated acute hemorrhagic conjunctivitis (AHC). It is solely responsible for two pandemics and several recurring outbreaks of the disease over the last decades, thus affecting millions of individuals throughout the world. To date, no antiviral agents or vaccines are available for combating this disease, and treatment is mainly supportive. CVA24v utilizes Neu5Ac-containing glycans as attachment receptors facilitating entry into host cells. We have previously reported that pentavalent Neu5Ac conjugates based on a glucose-scaffold inhibit CVA24v infection of human corneal epithelial cells. In this study, we report on the design and synthesis of scaffold-replaced pentavalent Neu5Ac conjugates and their effect on CVA24v cell transduction and the use of cryogenic electron microscopy (cryo-EM) to study the binding of these multivalent conjugates to CVA24v. The results presented here provide insights into the development of Neu5Ac-based inhibitors of CVA24v and, most significantly, the first application of cryo-EM to study the binding of a multivalent ligand to a lectin.
  •  
4.
  • Andersson, Emma K, 1978-, et al. (författare)
  • Small molecule screening using a whole cell viral replication reporter gene assay identifies 2-{[2-(benzoylamino)benzoyl]amino}-benzoic acid as a novel anti-adenoviral compound
  • 2010
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American society for microbiology. - 0066-4804 .- 1098-6596. ; 54:9, s. 3871-3877
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenovirus infections are widespread in society and are occasionally associated with severe, but rarely with life-threatening, disease in otherwise healthy individuals. In contrast, adenovirus infections present a real threat to immunocompromised individuals and can result in disseminated and fatal disease. The number of patients undergoing immunosuppressive therapy for solid organ or hematopoietic stem cell transplantation is steadily increasing, as is the number of AIDS patients, and this makes the problem of adenovirus infections even more urgent to solve. There is no formally approved treatment of adenovirus infections today, and existing antiviral agents evaluated for their anti-adenoviral effect give inconsistent results. We have developed a whole cell-based assay for high-throughput screening of potential anti-adenoviral compounds. The assay is unique in that it is based on a replication competent adenovirus type 11p GFP-expressing vector (RCAd11pGFP). This allows measurement of fluorescence changes as a direct result of RCAd11pGFP genome expression. Using this assay, we have screened 9,800 commercially available small organic compounds. Initially, we observed approximately 400 compounds that inhibited adenovirus expression in vitro by >/= 80% but only 24 were later confirmed as dose-dependent inhibitors of adenovirus. One compound in particular, 2-[[2-(benzoylamino)benzoyl]amino]-benzoic acid, turned out to be a potent inhibitor of adenovirus replication.
  •  
5.
  • Bao, Xiaofeng, et al. (författare)
  • Benzylidene acylhydrazides inhibit chlamydial growth in a type III secretion- and iron chelation-independent manner
  • 2014
  • Ingår i: Journal of Bacteriology. - : American Society for Microbiology. - 0021-9193 .- 1098-5530. ; 196:16, s. 2989-3001
  • Tidskriftsartikel (refereegranskat)abstract
    • Chlamydiae are widespread Gram-negative pathogens of humans and animals. Salicylidene acylhydrazides, developed as inhibitors of type III secretion system (T3SS) in Yersinia spp., have an inhibitory effect on chlamydial infection. However, these inhibitors also have the capacity to chelate iron, and it is possible that their antichlamydial effects are caused by iron starvation. Therefore, we have explored the modification of salicylidene acylhydrazides with the goal to uncouple the antichlamydial effect from iron starvation. We discovered that benzylidene acylhydrazides, which cannot chelate iron, inhibit chlamydial growth. Biochemical and genetic analyses suggest that the derivative compounds inhibit chlamydiae through a T3SS-independent mechanism. Four single nucleotide polymorphisms were identified in a Chlamydia muridarum variant resistant to benzylidene acylhydrazides, but it may be necessary to segregate the mutations to differentiate their roles in the resistance phenotype. Benzylidene acylhydrazides are well tolerated by host cells and probiotic vaginal Lactobacillus species and are therefore of potential therapeutic value.
  •  
6.
  • Caraballo, Rémi, et al. (författare)
  • Triazole linker-based trivalent sialic acid inhibitors of adenovirus type 37 infection of human corneal epithelial cells
  • 2015
  • Ingår i: Organic and biomolecular chemistry. - 1477-0520 .- 1477-0539. ; 13:35, s. 9194-9205
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenovirus type 37 (Ad37) is one of the principal agents responsible for epidemic keratoconjunctivitis (EKC), a severe ocular infection that remains without any available treatment. Recently, a trivalent sialic acid derivative (ME0322, Angew. Chem. Int. Ed., 2011, 50, 6519) was shown to function as a highly potent inhibitor of Ad37, efficiently preventing the attachment of the virion to the host cells and subsequent infection. Here, new trivalent sialic acid derivatives were designed, synthesized and their inhibitory properties against Ad37 infection of the human corneal epithelial cells were investigated. In comparison to ME0322, the best compound (17a) was found to be over three orders of magnitude more potent in a cell-attachment assay (IC50 = 1.4 nM) and about 140 times more potent in a cell-infection assay (IC50 = 2.9nM). X-ray crystallographic analysis demonstrated a trivalent binding mode of all compounds to the Ad37 fiber knob. For the most potent compound ophthalmic toxicity in rabbits was investigated and it was concluded that repeated eye administration did not cause any adverse effects.
  •  
7.
  • Chandra, Naresh, 1987-, et al. (författare)
  • Sialic Acid-Containing Glycans as Cellular Receptors for Ocular Human Adenoviruses : Implications for Tropism and Treatment
  • 2019
  • Ingår i: Viruses. - : MDPI. - 1999-4915. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Human adenoviruses (HAdV) are the most common cause of ocular infections. Species B human adenovirus type 3 (HAdV-B3) causes pharyngoconjunctival fever (PCF), whereas HAdV-D8, -D37, and -D64 cause epidemic keratoconjunctivitis (EKC). Recently, HAdV-D53, -D54, and -D56 emerged as new EKC-causing agents. HAdV-E4 is associated with both PCF and EKC. We have previously demonstrated that HAdV-D37 uses sialic acid (SA)-containing glycans as cellular receptors on human corneal epithelial (HCE) cells, and the virus interaction with SA is mediated by the knob domain of the viral fiber protein. Here, by means of cell-based assays and using neuraminidase (a SA-cleaving enzyme), we investigated whether ocular HAdVs other than HAdV-D37 also use SA-containing glycans as receptors on HCE cells. We found that HAdV-E4 and -D56 infect HCE cells independent of SAs, whereas HAdV-D53 and -D64 use SAs as cellular receptors. HAdV-D8 and -D54 fiber knobs also bound to cell-surface SAs. Surprisingly, HCE cells were found resistant to HAdV-B3 infection. We also demonstrated that the SA-based molecule i.e., ME0462, designed to bind to SA-binding sites on the HAdV-D37 fiber knob, efficiently prevents binding and infection of several EKC-causing HAdVs. Surface plasmon resonance analysis confirmed a direct interaction between ME0462 and fiber knobs. Altogether, we demonstrate that SA-containing glycans serve as receptors for multiple EKC-causing HAdVs, and, that SA-based compound function as a broad-spectrum antiviral against known and emerging EKC-causing HAdVs.
  •  
8.
  • Gwon, Yong-Dae, et al. (författare)
  • Antiviral Activity of Benzavir-2 against Emerging Flaviviruses
  • 2020
  • Ingår i: Viruses. - : MDPI. - 1999-4915. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Most flaviviruses are arthropod-borne viruses, transmitted by either ticks or mosquitoes, and cause morbidity and mortality worldwide. They are endemic in many countries and have recently emerged in new regions, such as the Zika virus (ZIKV) in South-and Central America, the West Nile virus (WNV) in North America, and the Yellow fever virus (YFV) in Brazil and many African countries, highlighting the need for preparedness. Currently, there are no antiviral drugs available to treat flavivirus infections. We have previously discovered a broad-spectrum antiviral compound, benzavir-2, with potent antiviral activity against both DNA- and RNA-viruses. Our purpose was to investigate the inhibitory activity of benzavir-2 against flaviviruses. We used a ZIKV ZsGreen-expressing vector, two lineages of wild-type ZIKV, and other medically important flaviviruses. Benzavir-2 inhibited ZIKV derived reporter gene expression with an EC50 value of 0.8 +/- 0.1 µM. Furthermore, ZIKV plaque formation, progeny virus production, and viral RNA expression were strongly inhibited. In addition, 2.5 µM of benzavir-2 reduced infection in vitro in three to five orders of magnitude for five other flaviviruses: WNV, YFV, the tick-borne encephalitis virus, Japanese encephalitis virus, and dengue virus. In conclusion, benzavir-2 was a potent inhibitor of flavivirus infection, which supported the broad-spectrum antiviral activity of benzavir-2.
  •  
9.
  • Islam, Md. Koushikul, et al. (författare)
  • Anti-Rift Valley fever virus activity in vitro, pre-clinical pharmacokinetics and oral bioavailability of benzavir-2, a broad-acting antiviral compound
  • 2018
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Rift Valley fever virus (RVFV) is a mosquito-borne hemorrhagic fever virus affecting both humans and animals with severe morbidity and mortality and is classified as a potential bioterror agent due to the possible aerosol transmission. At present there is no human vaccine or antiviral therapy available. Thus, there is a great need to develop new antivirals for treatment of RVFV infections. Benzavir-2 was previously identified as potent inhibitor of human adenovirus, herpes simplex virus type 1, and type 2. Here we assess the anti-RVFV activity of benzavir-2 together with four structural analogs and determine pre-clinical pharmacokinetic parameters of benzavir-2. In vitro, benzavir-2 efficiently inhibited RVFV infection, viral RNA production and production of progeny viruses. In vitro, benzavir-2 displayed satisfactory solubility, good permeability and metabolic stability. In mice, benzavir-2 displayed oral bioavailability with adequate maximum serum concentration. Oral administration of benzavir-2 formulated in peanut butter pellets gave high systemic exposure without any observed toxicity in mice. To summarize, our data demonstrated potent anti-RVFV activity of benzavir-2 in vitro together with a promising pre-clinical pharmacokinetic profile. This data support further exploration of the antiviral activity of benzavir-2 in in vivo efficacy models that may lead to further drug development for human use.
  •  
10.
  • Johansson, Emil, 1985-, et al. (författare)
  • Exploring divalent conjugates of 5-N-acetyl-neuraminic acid as inhibitors of coxsackievirus A24 variant (CVA24v) transduction
  • 2022
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 12:4, s. 2319-2331
  • Tidskriftsartikel (refereegranskat)abstract
    • Coxsackievirus A24 variant (CVA24v) is responsible for several outbreaks and two pandemics of the highly contagious eye infection acute hemorrhagic conjunctivitis (AHC). Currently, neither prevention (vaccines) nor treatments (antivirals) are available for combating this disease. CVA24v attaches to cells by binding Neu5Ac-containing glycans on the surface of cells which facilitates entry. Previously, we have demonstrated that pentavalent Neu5Ac conjugates attenuate CVA24v infection of human corneal epithelial (HCE) cells. In this study, we report on the structure-based design of three classes of divalent Neu5Ac conjugates, with varying spacer lengths, and their effect on CVA24v transduction in HCE cells. In relative terms, the most efficient class of divalent Neu5Ac conjugates are more efficient than the pentavalent Neu5Ac conjugates previously reported.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy