SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Gulati S.)) "

Sökning: (WFRF:(Gulati S.))

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  •  
5.
  •  
6.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Rathore, P. S., et al. (författare)
  • Comparative studies on tribocorrosion behaviour of plasma-sprayed and detonation gun coatings of Al2O3-13% TiO2 on biomedical alloy Ti-13Nb-13Zr and Gum metal
  • 2013
  • Ingår i: ASTM Special Technical Publication. ; , s. 88-104
  • Konferensbidrag (refereegranskat)abstract
    • The tribocorrosion behavior of titanium-based alloys is of significant interest as bio-implant materials. Bare alloys may not offer enough resistance to tribocorrosion, so coatings could be used to improve their performance. An important biomedical alloy, Ti-13Nb-13Zr, and a newly developed β titanium alloy called "Gum metal" (Ti-23%Ni-0.7%Ta-2%Zr-1 %O2) were used as substrates in the current work. Both were coated with conventional and nano-ceramic materials of Al2O3-TiO2. Bilayered coatings of ZrO2+Al2O3-13%TiO2 were also applied to the Ti-13Nb-13Zr using plasma spray. The coatings on Ti-13Nb-13Zr were applied using plasma spray, whereas that on the Gum metal was applied by a detonation gun (D-Gun). Surface morphology was characterized using a scanning electron microscope (SEM). Tribocorrosion experiments were performed in salt water using a linear reciprocating ball-on-plate tribometer with an aluminum ball as the slider. The nano particles are embedded in the fully melted splats and offered better crack propagation resistance. The high velocity of the D-Gun process resulted in a higher volume fraction of the embedded nano particles and produced substantial improvement in wear resistance relative to the air-plasma-sprayed coating. The conventional coating, with its higher porosity, exhibited a high corrosion rate compared to nano coating. The D-Gun coating, with its lower porosity, had a higher corrosion resistance than the plasma-sprayed coating, but bilayered plasma-sprayed coating showed even higher corrosion resistance, owing to its dense microstructure. Open-circuit potential measurements before and during tribocorrosion showed that the bilayered plasma-sprayed coating had better tribocorrosion resistance than the other coatings. Electrochemical impedance spectroscopy indicated stable impedance values for the bilayered plasma-sprayed coating before and after tribocorrosion. Copyright © 2013 by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy