SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Hägg Sara)) srt2:(2015-2019) "

Sökning: (WFRF:(Hägg Sara)) srt2:(2015-2019)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fall, Tove, et al. (författare)
  • Age- and sex-specific causal effects of adiposity on cardiovascular risk factors
  • 2015
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 64:5, s. 1841-1852
  • Tidskriftsartikel (refereegranskat)abstract
    • Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors.
  •  
2.
  • Horikoshi, Momoko, et al. (författare)
  • Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation.
  • 2015
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.
  •  
3.
  • Hägg, Sara, et al. (författare)
  • Adiposity as a cause of cardiovascular disease : a Mendelian randomization study
  • 2015
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 44:2, s. 578-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adiposity, as indicated by body mass index (BMI), has been associated with risk of cardiovascular diseases in epidemiological studies. We aimed to investigate if these associations are causal, using Mendelian randomization (MR) methods. Methods: The associations of BMI with cardiovascular outcomes [coronary heart disease (CHD), heart failure and ischaemic stroke], and associations of a genetic score (32 BMI single nucleotide polymorphisms) with BMI and cardiovascular outcomes were examined in up to 22 193 individuals with 3062 incident cardiovascular events from nine prospective follow-up studies within the ENGAGE consortium. We used random-effects meta-analysis in an MR framework to provide causal estimates of the effect of adiposity on cardiovascular outcomes. Results: There was a strong association between BMI and incident CHD (HR = 1.20 per SD-increase of BMI, 95% CI, 1.12-1.28, P = 1.9.10(-7)), heart failure (HR = 1.47, 95% CI, 1.35-1.60, P = 9.10(-19)) and ischaemic stroke (HR = 1.15, 95% CI, 1.06-1.24, P = 0.0008) in observational analyses. The genetic score was robustly associated with BMI (beta = 0.030 SD-increase of BMI per additional allele, 95% CI, 0.028-0.033, P = 3.10(-107)). Analyses indicated a causal effect of adiposity on development of heart failure (HR = 1.93 per SD-increase of BMI, 95% CI, 1.12-3.30, P = 0.017) and ischaemic stroke (HR = 1.83, 95% CI, 1.05-3.20, P = 0.034). Additional cross-sectional analyses using both ENGAGE and CARDIoGRAMplusC4D data showed a causal effect of adiposity on CHD. Conclusions: Using MR methods, we provide support for the hypothesis that adiposity causes CHD, heart failure and, previously not demonstrated, ischaemic stroke.
  •  
4.
  • Surakka, Ida, et al. (författare)
  • The impact of low-frequency and rare variants on lipid levels.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:6, s. 589-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing.
  •  
5.
  • Ganna, Andrea, et al. (författare)
  • Large-scale non-targeted metabolomic profiling in three human population-based studies
  • 2016
  • Ingår i: Metabolomics. - : Springer Science and Business Media LLC. - 1573-3882 .- 1573-3890. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-targeted metabolomic profiling is used to simultaneously assess a large part of the metabolome in a biological sample. Here, we describe both the analytical and computational methods used to analyze a large UPLC–Q-TOF MS-based metabolomic profiling effort using plasma and serum samples from participants in three Swedish population-based studies of middle-aged and older human subjects: TwinGene, ULSAM and PIVUS. At present, more than 200 metabolites have been manually annotated in more than 3600 participants using an in-house library of standards and publically available spectral databases. Data available at the metabolights repository include individual raw unprocessed data, processed data, basic demographic variables and spectra of annotated metabolites. Additional phenotypical and genetic data is available upon request to cohort steering committees. These studies represent a unique resource to explore and evaluate how metabolic variability across individuals affects human diseases.
  •  
6.
  •  
7.
  • Jansson, John-Olov, 1954, et al. (författare)
  • Body weight homeostat that regulates fat mass independently of leptin in rats and mice.
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 115:2, s. 427-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Subjects spending much time sitting have increased risk of obesity but the mechanism for the antiobesity effect of standing is unknown. We hypothesized that there is a homeostatic regulation of body weight. We demonstrate that increased loading of rodents, achieved using capsules with different weights implanted in the abdomen or s.c. on the back, reversibly decreases the biological body weight via reduced food intake. Importantly, loading relieves diet-induced obesity and improves glucose tolerance. The identified homeostat for body weight regulates body fat mass independently of fat-derived leptin, revealing two independent negative feedback systems for fat mass regulation. It is known that osteocytes can sense changes in bone strain. In this study, the body weight-reducing effect of increased loading was lost in mice depleted of osteocytes. We propose that increased body weight activates a sensor dependent on osteocytes of the weight-bearing bones. This induces an afferent signal, which reduces body weight. These findings demonstrate a leptin-independent body weight homeostat ("gravitostat") that regulates fat mass.
  •  
8.
  • Kuzmenko, Volodymyr, 1987, et al. (författare)
  • Enhanced growth of neural networks on cellulose-derived carbon nanofibrous scaffolds
  • 2015
  • Ingår i: Annual World Conference on Carbon – CARBON 2015.
  • Konferensbidrag (refereegranskat)abstract
    • Tissue engineering is a prospective method for solving the problem of recovery from neurodegenerative disorders as it helps to grow healthy neural tissue using supportive scaffolds. Biocompatible scaffolds with mechanical stability, appropriate topography and electrical conductivity previously demonstrated efficient results in neural tissue engineering applications. In this study, we present sustainable cellulose-derived carbon nanofibrous (CNF) biomaterial that can be used either as a scaffold for the regeneration of neural tissue or as a drug screening model. This scaffold material was characterized with excellent biocompatibility (95.6% cell viability), nanosized topography (fiber diameter in the range of 50-250 nm) and electrical conductivity (10*7 times higher value than the one of an unmodified cellulosic precursor) to support adhesion, growth and differentiation of SH-SY5Y neuroblastoma cells. The results showed that the formation of a neural network occurred within 10 days of differentiation, which is a good duration for SH-SY5Y neuroblastoma cells. We can conclude that topography and electrical conductivity of the CNF material played a major role in its positive influence on the development of neural tissue. CNF nanotopography resembles the one of an extracellular matrix of neural tissue, while electrical conductivity allows utilization of electrochemical signals for information transmission between neurons.
  •  
9.
  • Kuzmenko, Volodymyr, 1987, et al. (författare)
  • Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds
  • 2016
  • Ingår i: Materials Science and Engineering C. - : Elsevier BV. - 0928-4931 .- 1873-0191. ; 58, s. 14-23
  • Tidskriftsartikel (refereegranskat)abstract
    • The problemof recovery fromneurodegeneration needs new effective solutions. Tissue engineering is viewed as a prospective approach for solving this problemsince it can help to develop healthy neural tissue using supportivescaffolds. This study presents effective and sustainable tissue engineering methods for creating biomaterials from cellulose that can be used either as scaffolds for the growth of neural tissue in vitro or as drug screening models. To reach this goal, nanofibrous electrospun cellulose mats were made conductive via two different procedures: carbonization and addition of multi-walled carbon nanotubes. The resulting scaffolds were much moreconductive than untreated cellulose material and were used to support growth and differentiation of SH-SY5Y neuroblastoma cells. The cells were evaluated by scanning electron microscopy and confocal microscopy methods over a period of 15 days at different time points. The results showed that the cellulose-derived conductive scaffolds can provide support for good cell attachment, growth and differentiation. The formation of a neural network occurred within 10 days of differentiation, which is a promising length of time for SH-SY5Y neuroblastoma cells.
  •  
10.
  • Li, Xia, et al. (författare)
  • The frailty index is a predictor of cause-specific mortality independent of familial effects from midlife onwards : a large cohort study
  • 2019
  • Ingår i: BMC Medicine. - : BioMed Central. - 1741-7015. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Frailty index (FI) is a well-established predictor of all-cause mortality, but less is known for cause-specific mortality and whether familial effects influence the associations. Middle-aged individuals are also understudied for the association between FI and mortality. Furthermore, the population mortality impact of frailty remains understudied.METHODS: We estimated the predictive value of FI for all-cause and cause-specific mortality, taking into account familial factors, and tested whether the associations are time-dependent. We also assessed the proportion of all-cause and cause-specific deaths that are attributable to increased levels of frailty. We analyzed 42,953 participants from the Screening Across the Lifespan Twin Study (aged 41-95 years at baseline) with up to 20 years' mortality follow-up. The FI was constructed using 44 health-related items. Deaths due to cardiovascular disease (CVD), respiratory-related causes, and cancer were considered in the cause-specific analysis. Generalized survival models were used in the analysis.RESULTS: Increased FI was associated with higher risks of all-cause, CVD, and respiratory-related mortality, with the corresponding hazard ratios of 1.28 (1.24, 1.32), 1.31 (1.23, 1.40), and 1.23 (1.11, 1.38) associated with a 10% increase in FI in male single responders, and 1.21 (1.18, 1.25), 1.27 (1.15, 1.34), and 1.26 (1.15, 1.39) in female single responders. No significant associations were observed for cancer mortality. No attenuation of the mortality associations in unrelated individuals was observed when adjusting for familial effects in twin pairs. The associations were time-dependent with relatively greater effects observed in younger ages. Before the age of 80, the proportions of deaths attributable to FI levels > 0.21 were 18.4% of all-cause deaths, 25.4% of CVD deaths, and 20.4% of respiratory-related deaths in men and 19.2% of all-cause deaths, 27.8% of CVD deaths, and 28.5% of respiratory-related deaths in women. After the age of 80, the attributable proportions decreased, most notably for all-cause and CVD mortality.CONCLUSIONS: Increased FI predicts higher risks of all-cause, CVD, and respiratory-related mortality independent of familial effects. Increased FI presents a relatively greater risk factor at midlife than in old age. Increased FI has a significant population mortality impact that is greatest through midlife until the age of 80.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (16)
konferensbidrag (1)
Typ av innehåll
refereegranskat (17)
Författare/redaktör
Hägg, Sara (11)
Pedersen, Nancy L (7)
Lind, Lars (6)
Ingelsson, Erik (6)
Salomaa, Veikko (4)
Jula, Antti (4)
visa fler...
Perola, Markus (4)
McCarthy, Mark I (4)
van Duijn, Cornelia ... (4)
Magnusson, Patrik K ... (4)
Havulinna, Aki S. (4)
Ripatti, Samuli (4)
Gieger, Christian (4)
Kaprio, Jaakko (4)
Samani, Nilesh J. (4)
Ploner, Alexander (4)
Metspalu, Andres (4)
Gatenholm, Paul, 195 ... (3)
Lyssenko, Valeriya (3)
Groop, Leif (3)
Raitakari, Olli T (3)
Ohlsson, Claes, 1965 (3)
Fall, Tove (3)
Ladenvall, Claes (3)
Kuzmenko, Volodymyr, ... (3)
Nelson, Christopher ... (3)
Peters, Annette (3)
Boomsma, Dorret I. (3)
Windahl, Sara H, 197 ... (3)
Eriksson, Johan G. (3)
Jansson, John-Olov, ... (3)
Palsdottir, Vilborg, ... (3)
Bellman, Jakob (3)
Strachan, David P (2)
Syvänen, Ann-Christi ... (2)
Enoksson, Peter, 195 ... (2)
Tregouet, David Alex ... (2)
Ikram, M. Arfan (2)
Hamsten, Anders (2)
Virtamo, Jarmo (2)
Surakka, Ida (2)
Lehtimäki, Terho (2)
Thorleifsson, Gudmar (2)
Thorsteinsdottir, Un ... (2)
Stefansson, Kari (2)
Mangino, Massimo (2)
Willemsen, Gonneke (2)
Spector, Tim D. (2)
Mahajan, Anubha (2)
Kuulasmaa, Kari (2)
visa färre...
Lärosäte
Karolinska Institutet (14)
Uppsala universitet (8)
Göteborgs universitet (3)
Jönköping University (3)
Lunds universitet (3)
Chalmers tekniska högskola (3)
visa fler...
Stockholms universitet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Teknik (3)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy