SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Hoppe Clara J. M.)) "

Sökning: (WFRF:(Hoppe Clara J. M.))

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Mock, Thomas, et al. (författare)
  • Multiomics in the central Arctic Ocean for benchmarking biodiversity change
  • 2022
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 20:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiomics approaches need to be applied in the central Arctic Ocean to benchmark biodiversity change and to identify novel species and their genes. As part of MOSAiC, EcoOmics will therefore be essential for conservation and sustainable bioprospecting in one of the least explored ecosystems on Earth.
  •  
3.
  • Smith, Madison M., et al. (författare)
  • Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack—Recent insights on these historically overlooked features
  • 2023
  • Ingår i: Elementa: Science of the Anthropocene. - 2325-1026. ; 11:1
  • Forskningsöversikt (refereegranskat)abstract
    • The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean features, typically on the order of 1 m thick or less, they are rarely detected by standard methods, but are nevertheless pervasive and critically important in Arctic summer. Observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in summer 2020 focused on the evolution of such layers and made significant advancements in understanding their role in the coupled Arctic system. Here we provide a review of thin meltwater layers in the Arctic, with emphasis on the new findings from MOSAiC. Both prior and recent observational datasets indicate an intermittent yet longlasting (weeks to months) meltwater layer in the upper ocean on the order of 0.1 m to 1.0 m in thickness, with a large spatial range. The presence of meltwater layers impacts the physical system by reducing bottom ice melt and allowing new ice formation via false bottom growth. Collectively, the meltwater layer and false bottoms reduce atmosphere-ocean exchanges of momentum, energy, and material.The impacts on the coupled Arctic system are far-reaching, including acting as a barrier for nutrient and gas exchange and impacting ecosystem diversity and productivity.
  •  
4.
  • Rabe, Benjamin, et al. (författare)
  • The MOSAiC Distributed Network: Observing the coupled Arctic system with multidisciplinary, coordinated platforms
  • 2024
  • Ingår i: Elementa. - 2325-1026. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Central Arctic properties and processes are important to the regional and global coupled climate system. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Distributed Network (DN) of autonomous ice-tethered systems aimed to bridge gaps in our understanding of temporal and spatial scales, in particular with respect to the resolution of Earth system models. By characterizing variability around local measurements made at a Central Observatory, the DN covers both the coupled system interactions involving the ocean-ice-atmosphere interfaces as well as three-dimensional processes in the ocean, sea ice, and atmosphere. The more than 200 autonomous instruments (“buoys”) were of varying complexity and set up at different sites mostly within 50 km of the Central Observatory. During an exemplary midwinter month, the DN observations captured the spatial variability of atmospheric processes on sub-monthly time scales, but less so for monthly means. They show significant variability in snow depth and ice thickness, and provide a temporally and spatially resolved characterization of ice motion and deformation, showing coherency at the DN scale but less at smaller spatial scales. Ocean data show the background gradient across the DN as well as spatially dependent time variability due to local mixed layer sub-mesoscale and mesoscale processes, influenced by a variable ice cover. The second case (May–June 2020) illustrates the utility of the DN during the absence of manually obtained data by providing continuity of physical and biological observations during this key transitional period. We show examples of synergies between the extensive MOSAiC remote sensing observations and numerical modeling, such as estimating the skill of ice drift forecasts and evaluating coupled system modeling. The MOSAiC DN has been proven to enable analysis of local to mesoscale processes in the coupled atmosphere-ice-ocean system and has the potential to improve model parameterizations of important, unresolved processes in the future.
  •  
5.
  • Beck, Lisa J., et al. (författare)
  • Differing Mechanisms of New Particle Formation at Two Arctic Sites
  • 2021
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 48:4
  • Tidskriftsartikel (refereegranskat)abstract
    • New particle formation in the Arctic atmosphere is an important source of aerosol particles. Understanding the processes of Arctic secondary aerosol formation is crucial due to their significant impact on cloud properties and therefore Arctic amplification. We observed the molecular formation of new particles from low-volatility vapors at two Arctic sites with differing surroundings. In Svalbard, sulfuric acid (SA) and methane sulfonic acid (MSA) contribute to the formation of secondary aerosol and to some extent to cloud condensation nuclei (CCN). This occurs via ion-induced nucleation of SA and NH3 and subsequent growth by mainly SA and MSA condensation during springtime and highly oxygenated organic molecules during summertime. By contrast, in an ice-covered region around Villum, we observed new particle formation driven by iodic acid but its concentration was insufficient to grow nucleated particles to CCN sizes. Our results provide new insight about sources and precursors of Arctic secondary aerosol particles.
  •  
6.
  • Koch, Xianyu, et al. (författare)
  • Variability of Dissolved Organic Matter Sources in the Upper Eurasian Arctic Ocean
  • 2024
  • Ingår i: Journal of Geophysical Research - Oceans. - 0148-0227 .- 2156-2202. ; 129, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromophoric dissolved organic matter (CDOM) is a ubiquitous component in marine environments, and substantial changes in its sources and distribution, related to the carbon cycle in the Arctic Ocean, are expected due to Arctic warming. In this study, we present unique CDOM data in the Eurasian Arctic Ocean derived from the year‐round MOSAiC expedition. We used CDOM absorbance spectra and fluorescence excitation‐emission matrices in combination with parallel factor analysis to characterize differences in DOM sources and composition. Our results suggested that terrestrial DOM was less sensitive to seasonal changes but controlled by regionality in hydrography. Elevated dissolved organic carbon (DOC) levels in polar surface water were primarily derived from terrigenous sources as identified by CDOM absorption and fluorescence characteristics. In the Amundsen Basin and western Fram Strait surface waters, to which terrestrial DOM is primarily transported by the Transpolar Drift, we found, on average, a 188% larger meteoric water fraction and a 40% higher DOC concentration compared to the Atlantic water that dominated western Nansen Basin and Yermak Plateau. In the Amundsen Basin, the DOC concentration in summer of surface water was only 13% higher compared to winter season. Additionally, autochthonous DOM and chlorophyll‐a concentrations were relatively low in surface water and exhibited significant differences compared to those observed in summer, while there were significant differences between autochthonous DOM and chlorophyll‐a. We also observed that sea ice melt contributed to autochthonous DOM in summer, while storms in winter affected the vertical distribution of terrestrial and autochthonous DOM in the subsurface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy