SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Martinez Monleon Angela)) srt2:(2022) "

Sökning: (WFRF:(Martinez Monleon Angela)) srt2:(2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Börjesson, Vanja, et al. (författare)
  • TC-hunter: identification of the insertion site of a transgenic gene within the host genome
  • 2022
  • Ingår i: Bmc Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Transgenic animal models are crucial for the study of gene function and disease, and are widely utilized in basic biological research, agriculture and pharma industries. Since the current methods for generating transgenic animals result in the random integration of the transgene under study, the phenotype may be compromised due to disruption of known genes or regulatory regions. Unfortunately, most of the tools that predict transgene insertion sites from high-throughput data are not publicly available or not properly maintained. Results: We implemented TC-hunter, Transgene-Construct hunter, an open tool that identifies transgene insertion sites and provides simple reports and visualization aids. It relies on common tools used in the analysis of high-throughput data and makes use of chimeric reads and discordant read pairs to identify and support the transgenic insertion site. To demonstrate its applicability, we applied TC-hunter to four transgenic mice samples harboring the human PPM1D gene, a model used in the study of malignant tumor development. We identified the transgenic insertion site in each sample and experimentally validated them with Touchdown-polymerase chain reaction followed by Sanger sequencing. Conclusions: TC-hunter is an accessible bioinformatics tool that can automatically identify transgene insertion sites from DNA sequencing data with high sensitivity (98%) and precision (92.45%). TC-hunter is a valuable tool that can aid in evaluating any potential phenotypic complications due to the random integration of the transgene and can be accessed at https://github.com/bcfgothenburg/SSF.
  •  
2.
  • Martinez-Monleon, Angela, et al. (författare)
  • Amplification of CDK4 and MDM2: a detailed study of a high-risk neuroblastoma subgroup
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In neuroblastoma, MYCN amplification and 11q-deletion are important, although incomplete, markers of high-risk disease. It is therefore relevant to characterize additional alterations that can function as prognostic and/or predictive markers. Using SNP-microarrays, a group of neuroblastoma patients showing amplification of one or multiple 12q loci was identified. Two loci containing CDK4 and MDM2 were commonly co-amplified, although amplification of either locus in the absence of the other was observed. Pharmacological inhibition of CDK4/6 with ribociclib or abemaciclib decreased proliferation in a broad set of neuroblastoma cell lines, including CDK4/MDM2-amplified, whereas MDM2 inhibition by Nutlin-3a was only effective in p53(wild-type) cells. Combined CDK4/MDM2 targeting had an additive effect in p53(wild-type) cell lines, while no or negative additive effect was observed in p53(mutated) cells. Most 12q-amplified primary tumors were of abdominal origin, including those of intrarenal origin initially suspected of being Wilms' tumor. An atypical metastatic pattern was also observed with low degree of bone marrow involvement, favoring other sites such as the lungs. Here we present detailed biological data of an aggressive neuroblastoma subgroup hallmarked by 12q amplification and atypical clinical presentation for which our in vitro studies indicate that CDK4 and/or MDM2 inhibition also could be beneficial.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy