SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Sandstrom Karin)) "

Sökning: (WFRF:(Sandstrom Karin))

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Battersby, C., et al. (författare)
  • The Origins Space Telescope
  • 2018
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 2:8, s. 596-599
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Origins Space Telescope, one of four large Mission Concept Studies sponsored by NASA for review in the 2020 US Astrophysics Decadal Survey, will open unprecedented discovery space in the infrared, unveiling our cosmic origins.
  •  
2.
  • Berne, Olivier, et al. (författare)
  • PDRs4All : A JWST Early Release Science Program on Radiative Feedback from Massive Stars
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
  •  
3.
  • Chown, Ryan, et al. (författare)
  • PDRs4All: IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 µm. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. These high-quality data allow for an unprecedentedly detailed view of AIBs. Aims. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR (i.e. the three H2 dissociation fronts), the atomic PDR, and the H II region. Methods. We used JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extracted five template spectra to represent the morphology and environment of the Orion Bar PDR. We investigated and characterised the AIBs in these template spectra. We describe the variations among them here. Results. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. The Orion Bar spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 µm with well-defined profiles. In addition, the spectra display a wealth of weaker features and sub-components. The widths of many AIBs show clear and systematic variations, being narrowest in the atomic PDR template, but showing a clear broadening in the H II region template while the broadest bands are found in the three dissociation front templates. In addition, the relative strengths of AIB (sub-)components vary among the template spectra as well. All AIB profiles are characteristic of class A sources as designated by Peeters (2022, A&A, 390, 1089), except for the 11.2 µm AIB profile deep in the molecular zone, which belongs to class B11.2. Furthermore, the observations show that the sub-components that contribute to the 5.75, 7.7, and 11.2 µm AIBs become much weaker in the PDR surface layers. We attribute this to the presence of small, more labile carriers in the deeper PDR layers that are photolysed away in the harsh radiation field near the surface. The 3.3/11.2 AIB intensity ratio decreases by about 40% between the dissociation fronts and the H II region, indicating a shift in the polycyclic aromatic hydrocarbon (PAH) size distribution to larger PAHs in the PDR surface layers, also likely due to the effects of photochemistry. The observed broadening of the bands in the molecular PDR is consistent with an enhanced importance of smaller PAHs since smaller PAHs attain a higher internal excitation energy at a fixed photon energy. Conclusions. Spectral-imaging observations of the Orion Bar using JWST yield key insights into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 µm AIB emission from class B11.2 in the molecular PDR to class A11.2 in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a “weeding out” of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called ‘grandPAHs’.
  •  
4.
  • Fanton, Silvia, et al. (författare)
  • The translocator protein gene is associated with endogenous pain modulation and the balance between glutamate and gamma-aminobutyric acid in fibromyalgia and healthy subjects : a multimodal neuroimaging study
  • 2022
  • Ingår i: Pain. - : Ovid Technologies (Wolters Kluwer Health). - 0304-3959 .- 1872-6623. ; 163:2, s. 274-286
  • Tidskriftsartikel (refereegranskat)abstract
    • A cerebral upregulation of the translocator protein (TSPO), a biomarker of glial activation, has been reported in fibromyalgia subjects (FMS). The TSPO binding affinity is genetically regulated by the Ala147Thr polymorphism in the TSPO gene (rs6971) and allows for a subject classification into high affinity binders (HABs) and mixed/low affinity binders (MLABs). The aim of the present multimodal neuroimaging study was to examine the associations of the TSPO polymorphism with: (1) conditioned pain modulation, (2) expectancy-modulated pain processing assessed during functional magnetic resonance imaging, and (3) the concentration and balance of glutamate and gamma-aminobutyric acid in the rostral anterior cingulate cortex and thalamus using proton magnetic resonance spectroscopy in FMS (n = 83) and healthy controls (n = 43). The influence of TSPO on endogenous pain modulation presented in the form of TSPO HABs, as opposed to MLABs, displaying less efficient descending pain inhibition and expectancy-induced reduction of pain. Translocator protein HABs in both groups (FM and healthy controls) were found to have higher thalamic glutamate concentrations and exhibit a pattern of positive correlations between glutamate and gamma-aminobutyric acid in the rostral anterior cingulate cortex, not seen in MLABs. Altogether, our findings point to TSPO-related mechanisms being HAB-dependent, brain region-specific, and non-FM-specific, although in FMS the disadvantage of an aberrant pain regulation combined with an HAB genetic set-up might hamper pain modulation more strongly. Our results provide evidence for an important role of TSPO in pain regulation and brain metabolism, thereby supporting the ongoing drug development targeting TSPO-associated mechanisms for pain relief.
  •  
5.
  • Habart, Emilie, et al. (författare)
  • PDRs4All II. JWST’s NIR and MIR imaging view of the Orion Nebula
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The James Webb Space Telescope (JWST) has captured the most detailed and sharpest infrared (IR) images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). Aims. We investigate the fundamental interaction of far-ultraviolet (FUV) photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Methods. We utilized NIRCam and MIRI to obtain sub-arcsecond images over ∼150′′ and 42′′ in key gas phase lines (e.g., Pa α, Br α, [FeII] 1.64 µm, H2 1–0 S(1) 2.12 µm, 0–0 S(9) 4.69 µm), aromatic and aliphatic infrared bands (aromatic infrared bands at 3.3–3.4 µm, 7.7, and 11.3 µm), dust emission, and scattered light. Their emission are powerful tracers of the IF and DF, FUV radiation field and density distribution. Using NIRSpec observations the fractional contributions of lines, AIBs, and continuum emission to our NIRCam images were estimated. A very good agreement is found for the distribution and intensity of lines and AIBs between the NIRCam and NIRSpec observations. Results. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of ∼0.1–1′′ (∼0.0002–0.002 pc or ∼40–400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. The spatial distribution of the AIBs reveals that the PDR edge is steep and is followed by an extensive warm atomic layer up to the DF with multiple ridges. A complex, structured, and folded H0/H2 DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar as our observations show that a 3D “terraced” geometry is required to explain the JWST observations. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate. Conclusions. This study offers an unprecedented dataset to benchmark and transform PDR physico-chemical and dynamical models for the JWST era. A fundamental step forward in our understanding of the interaction of FUV photons with molecular clouds and the role of FUV irradiation along the star formation sequence is provided.
  •  
6.
  • Hey, T., et al. (författare)
  • Evaluating 5 and 8 pH-point titrations for measuring VFA in full-scale primary sludge hydrolysate
  • 2013
  • Ingår i: Water S.A.. - : Academy of Science of South Africa. - 1816-7950 .- 0378-4738. ; 39:1, s. 17-22
  • Tidskriftsartikel (refereegranskat)abstract
    • An evaluation of 5 and 8 pH-point titrimetric methods for determining volatile fatty acids (VFAs) was conducted, and the results were compared for tap water and primary treated wastewater at the laboratory scale. These techniques were then applied to full-scale primary sludge hydrolysate, and the results were compared with those obtained via gas chromatography. The comparison showed that the VFA concentrations measured with the two titration methods were higher than those obtained via gas chromatography, differing by 9 and 13 mg COD.l(-1) for the hydrolysate and by 5 and 6 mg COD.l(-1) for the ordinary primary settler effluent. No improvement in the accuracy of VFA concentration measurement was obtained from applying the 8 pH-point titration method instead of the 5 point method. The 5 pH-point method was successfully applied to determine VFA in full-scale primary sludge hydrolysate and was shown to be equally efficient to the methods that are routinely-used for this purpose.
  •  
7.
  • Leisawitz, David, et al. (författare)
  • Origins Space Telescope: Baseline mission concept
  • 2021
  • Ingår i: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural background-limited sensitivity.
  •  
8.
  • Leisawitz, David, et al. (författare)
  • The origins space telescope
  • 2019
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11115
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 1/2 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8-20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25-588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural backgroundlimited sensitivity.
  •  
9.
  • Leisawitz, David, et al. (författare)
  • The Origins Space Telescope: Mission concept overview
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • Downloading of the abstract is permitted for personal use only. The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
  •  
10.
  • Liu, Daizhong, et al. (författare)
  • PHANGS–JWST First Results : Stellar-feedback-driven Excitation and Dissociation of Molecular Gas in the Starburst Ring of NGC 1365?
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS–JWST imaging with new Atacama Large Millimeter/submillimeter Array multi-J CO (1–0, 2–1 and 4–3) and [C ı] (1–0) mapping, which we use to trace CO excitation via R42 = ICO(4−3)/ICO(2−1) and R21 = ICO(2−1)/ICO(1−0) and dissociation via RCICO = I[CI](1−0)/ICO(2−1) at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lower R42) and increased signatures of dissociation (higher RCICO) in the downstream regions. There, radiative-transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compare R42 and RCICO with local conditions across the regions and find that both correlate with near-IR 2 μm emission tracing the YMCs and with both polycyclic aromatic hydrocarbon (11.3 μm) and dust continuum (21 μm) emission. In general, RCICO exhibits ∼0.1 dex tighter correlations than R42, suggesting C ı to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4–3). Our results are consistent with a scenario where gas flows into the two arm regions along the bar, becomes condensed/shocked, forms YMCs, and then these YMCs heat and dissociate the gas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (16)
konferensbidrag (4)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Sandstrom, Karin (12)
Gerin, M. (9)
Bergin, E. A. (8)
Meixner, Margaret (7)
Battersby, C. (6)
Wiedner, M.C. (6)
visa fler...
De Beck, Elvire, 198 ... (6)
Melnick, G. J. (6)
Carey, Sean (6)
Armus, Lee (6)
Cooray, A. (6)
Kataria, Tiffany (6)
Pope, Alexandra (6)
Stevenson, Kevin B. (6)
Leisawitz, David (6)
Bauer, James (6)
Bradford, C. Matt (6)
Milam, S. (6)
Narayanan, D. (6)
Padgett, Deborah (6)
Pontoppidan, Klaus (6)
Roellig, Thomas (6)
Vieira, Joaquin (6)
Wright, Edward (6)
Zmuidzinas, Jonas (6)
Staguhn, Johannes (6)
Benford, Dominic (6)
Mamajek, Eric E. (6)
Neff, Susan G. (6)
Burgarella, Denis (6)
Helmich, F. (6)
Sakon, Itsuki (6)
Scott, D. (5)
Fortney, Jonathan J. (5)
Black, John H, 1949 (4)
Emsellem, Eric (4)
Kruijssen, J. M. Die ... (4)
Chevance, Mélanie (4)
Klessen, Ralf S. (4)
Mulas, Giacomo (4)
Roueff, Evelyne (4)
Kaltenegger, L. (4)
Thomas, Richard D. (4)
Zhang, Yong (4)
Onaka, Takashi (4)
Merino, Pablo (4)
HornekÆr, Liv (4)
Barnes, Ashley T. (4)
Ennico, Kimberly (4)
Sheth, K. (4)
visa färre...
Lärosäte
Chalmers tekniska högskola (11)
Stockholms universitet (4)
Uppsala universitet (3)
Karolinska Institutet (3)
Lunds universitet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Linköpings universitet (1)
visa färre...
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Teknik (5)
Medicin och hälsovetenskap (4)
Humaniora (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy