SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Venkatesh Byrappa)) "

Sökning: (WFRF:(Venkatesh Byrappa))

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amemiya, Chris T., et al. (författare)
  • The African coelacanth genome provides insights into tetrapod evolution
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 496:7445, s. 311-316
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.
  •  
2.
  • Braasch, Ingo, et al. (författare)
  • The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:4, s. 427-437
  • Tidskriftsartikel (refereegranskat)abstract
    • To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.
  •  
3.
  • Brawand, David, et al. (författare)
  • The genomic substrate for adaptive radiation in African cichlid fish
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 513:7518, s. 375-381
  • Tidskriftsartikel (refereegranskat)abstract
    • Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand themolecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.
  •  
4.
  • Bromée, Torun, et al. (författare)
  • Uneven Evolutionary Rates of Bradykinin B1 and B2 Receptors in Vertebrate Lineages
  • 2006
  • Ingår i: Gene. - : Elsevier. - 0378-1119 .- 1879-0038. ; 373, s. 100-108
  • Tidskriftsartikel (refereegranskat)abstract
    • Bradykinin acts through two receptor subtypes in mammals and generates a variety of responses including pain, inflammation and hypotension. The evolutionary history of the bradykinin system has been unclear due to shortage of information outside mammals. We describe here two receptor subtypes and the bradykinin precursor in three species of bony fish (the zebrafish Danio rerio, the Japanese pufferfish Takifugu rubripes, and the green spotted pufferfish Tetraodon nigroviridis) and chicken and analyze the relationships to mammals by a combination of phylogeny, conserved synteny and exon–intron organization. All of these species have two receptor genes located close to each other in a tandem formation, with the B2 gene 5′ to the B1 gene, in chromosomal regions displaying conserved synteny between the species (albeit conservation of synteny in zebrafish is still unclear due to poor genome assembly). The evolutionary rate differs between the two genes as well as between lineages leading to differing pharmacological properties for both B1 and B2 across vertebrate classes. Also the bradykinin precursor gene was identified in all of these species in a chromosome region with conserved synteny. The tissue distribution of mRNA in T. rubripes is similar for B1 and B2, suggesting more similar regulation for the two genes than in mammals. In conclusion, the receptor tandem duplication predates the divergence of ray-finned fish and tetrapods and no additional duplicates of the receptors or bradykinin seem to have survived the ray-finned fish tetraploidization.
  •  
5.
  •  
6.
  • Larsson, Tomas A., 1978-, et al. (författare)
  • Neuropeptide Y-family peptides and receptors in the elephant shark, Callorhinchus milii confirm gene duplications before the gnathostome radiation
  • 2009
  • Ingår i: Genomics. - : Elsevier BV. - 0888-7543 .- 1089-8646. ; 93:3, s. 254-260
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe here the repertoire of neuropeptide Y (NPY) peptides and receptors in the elephant shark Callorhinchus milii, belonging to the chondrichthyans that diverged from the rest of the gnathostome (jawed vertebrate) lineage about 450 million years ago and the first chondrichthyan with a genome project. We have identified two peptide genes that are orthologous to NPY and PYY (peptide YY) in other vertebrates, and seven receptor genes orthologous to the Y1, Y2, Y4, Y5, Y6, Y7 and Y8 subtypes found in tetrapods and teleost fishes. The repertoire of peptides and receptors seems to reflect the ancestral configuration in the predecessor of all gnathostomes, whereas other lineages such as mammals and teleosts have lost one or more receptor genes or have acquired 1-2 additional peptide genes. Both the peptides and receptors showed broad and overlapping mRNA expression which may explain why some receptor gene losses could take place in some lineages, but leaves open the question why all the known ancestral receptors have been retained in the elephant shark.
  •  
7.
  • Larsson, Tomas, et al. (författare)
  • Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions
  • 2008
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 8:1, s. 184-
  • Forskningsöversikt (refereegranskat)abstract
    • Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY) receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes) and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs) showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains) and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events). RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate tetraploidizations forming a paralogon comprising human chromosomes 4, 5, 8 and 10 and one teleost tetraploidization. The combination of positional and phylogenetic data further strengthens the identification of orthologs and paralogs in the NPY receptor family.
  •  
8.
  • Sundström, Görel, et al. (författare)
  • Evolution of the neuropeptide Y family : new genes by chromosome duplications in early vertebrates and in teleost fishes
  • 2008
  • Ingår i: General and Comparative Endocrinology. - : Elsevier BV. - 0016-6480 .- 1095-6840. ; 155:3, s. 705-716
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite sequence information from many vertebrates the evolution of the neuropeptide Y (NPY) family of peptides has been difficult to resolve, particularly among ray-finned fishes. We have used chromosomal location and sequence analyses to identify orthologs and gene duplicates in teleost fish genomes. Our analyses support origin of NPY and peptide YY (PYY) from a common ancestor in early vertebrate evolution through a chromosome duplication. We report here that the teleost tetraploidization generated duplicates of both NPY and PYY and that all four genes are still present in the two sequenced pufferfish genomes Tetraodon nigroviridis and Takifugu rubripes as well as three-spined stickleback, Gasterosteus aculeatus. The zebrafish Danio rerio NPYb gene has probably been lost whereas medaka, Oryzias latipes seems to lack PYYb. Some of the previously published PYY sequences were misidentified and actually constitute NPYb. Our analyses confirm that the peptide previously named PY in some fish species is a duplicate of the PYY gene and hence should be called PYYb. The NPYa and NPYb genes in Takifugu rubripes are predominantly expressed in brain, as detected by RT-PCR, whereas PYYa and PYYb are expressed in several organs including brain, intestine and gonads. Thus, also the resemblance in expression pattern supports the fish gene duplication scenario. Our study shows that when sequence comparisons give ambiguous results, chromosomal location can serve as a useful criterion to identify orthologs. This strategy may help to resolve relationships in several families of short peptides.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy