SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(LANTBRUKSVETENSKAPER) AMNE:(Bioteknologi med applikationer på växter och djur) ;pers:(Dida Mulatu Geleta)"

Sökning: AMNE:(LANTBRUKSVETENSKAPER) AMNE:(Bioteknologi med applikationer på växter och djur) > Dida Mulatu Geleta

  • Resultat 1-10 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abreha, Kibrom Berhe, et al. (författare)
  • Understanding the Sorghum–Colletotrichum sublineola interactions for enhanced host resistance
  • 2021
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Improving sorghum resistance is a sustainable method to reduce yield losses due to anthracnose, a devastating disease caused by Colletotrichum sublineola. Elucidating the molecular mechanisms of sorghum–C. sublineola interactions would help identify biomarkers for rapid and efficient identification of novel sources for host-plant resistance improvement, understanding the pathogen virulence, and facilitating resistance breeding. Despite concerted efforts to identify resistance sources, the knowledge about sorghum–anthracnose interactions remains scanty. Hence, in this review, we presented an overview of the current knowledge on the mechanisms of sorghum-C. sublineola molecular interactions, sources of resistance for sorghum breeding, quantitative trait loci (QTL), and major (R-) resistance gene sequences as well as defense-related genes associated with anthracnose resistance. We summarized current knowledge about C. sublineola populations and its virulence. Illustration of the sorghum-C. sublineola interaction model based on the current understanding is also provided. We highlighted the importance of genomic resources of both organisms for integrated omics research to unravel the key molecular components underpinning compatible and incompatible sorghum–anthracnose interactions. Furthermore, sorghum-breeding strategy employing rapid sorghum germplasm screening, systems biology, and molecular tools is presented.
  •  
2.
  • Brhanie Mesfin, Haftom, et al. (författare)
  • Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses
  • 2022
  • Ingår i: Frontiers in Genetics. - : Frontiers Media SA. - 1664-8021. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Eleusine coracana (L.) Gaertn., commonly known as finger millet, is a multipurpose crop used for food and feed. Genomic tools are required for the characterization of crop gene pools and their genomics-led breeding. High-throughput sequencing-based characterization of finger millet germplasm representing diverse agro-ecologies was considered an effective method for determining its genetic diversity, thereby suggesting potential candidates for breeding. In this study, the genotyping-by-sequencing (GBS) method was used to simultaneously identify novel single nucleotide polymorphism (SNP) markers and genotype 288 finger millet accessions collected from Ethiopia and Zimbabwe. The accessions were characterized at individual and group levels using 5,226 bi-allelic SNPs, with a minimum allele frequency (MAF) of above 0.05, distributed across 2,500 scaffolds of the finger millet reference genome. The polymorphism information content (PIC) of the SNPs was 0.23 on average, and a quarter of them have PIC values over 0.32, making them highly informative. The grouping of the 288 accessions into seven populations based on geographic proximity and the potential for germplasm exchange revealed a narrow range of observed heterozygosity (Ho; 0.09-0.11) and expected heterozygosity (He) that ranged over twofold, from 0.11 to 0.26. Alleles unique to the different groups were also identified, which merit further investigation for their potential association with desirable traits. The analysis of molecular variance (AMOVA) revealed a highly significant genetic differentiation among groups of accessions classified based on the geographic region, country of origin, days to flowering, panicle type, and Al tolerance (p < 0.01). The high genetic differentiation between Ethiopian and Zimbabwean accessions was evident in the AMOVA, cluster, principal coordinate, and population structure analyses. The level of genetic diversity of finger millet accessions varies moderately among locations within Ethiopia, with accessions from the northern region having the lowest level. In the neighbor-joining cluster analysis, most of the improved cultivars included in this study were closely clustered, probably because they were developed using genetically less diverse germplasm and/or selected for similar traits, such as grain yield. The recombination of alleles via crossbreeding genetically distinct accessions from different regions of the two countries can potentially lead to the development of superior cultivars.
  •  
3.
  • Dida, Mulatu Geleta, et al. (författare)
  • Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange
  • 2017
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Durum wheat is the 10th most important crop in the world, and its use traces back to the origin of agriculture. Unfortunately, in the last century only part of the genetic diversity available for this species has been captured in modern varieties through breeding. Here, the population structure and genetic diversity shared among elites and landraces collected from 32 countries was investigated. A total of 370 entries were genotyped with Axiom 35K array to identify 8,173 segregating single nucleotide polymorphisms (SNPs). Of these, 500 were selected as highly informative with a PIC value above 0.32 and used to test population structure via DAPC, STRUCTURE, and neighbor joining tree. A total of 10 sub-populations could be identified, six constituted by modern germplasm and four by landraces of different geographical origin. Interestingly, genomic comparison among groups indicated that Middle East and Ethiopia had the lowest level of allelic diversity, while breeding programs and landraces collected outside these regions were the richest in rare alleles. Further, phylogenetic analysis among landraces indicated that Ethiopia might represent a second center of origin of durum wheat, rather than a second domestication site as previously believed. Together, the analyses carried here provide a global picture of the available genetic diversity for this crop and shall guide its targeted use by breeders.
  •  
4.
  • Hammenhag, Cecilia, et al. (författare)
  • Novel Expressed Sequence Tag-Derived and Other Genomic Simple Sequence Repeat Markers Revealed Genetic Diversity in Ethiopian Finger Millet Landrace Populations and Cultivars
  • 2021
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Finger millet (Eleusine coracana (L.) Geartn.) is a self-pollinating amphidiploid crop cultivated with minimal input for food and feed, as well as a source of income for small-scale farmers. To efficiently assess its genetic diversity for conservation and use in breeding programs, polymorphic DNA markers that represent its complex tetraploid genome have to be developed and used. In this study, 13 new expressed sequence tag-derived simple sequence repeat (EST-SSR) markers were developed based on publicly available finger millet ESTs. Using 10 polymorphic SSR markers (3 genomic and 7 novel EST-derived), the genetic diversity of 55 landrace accessions and 5 cultivars of finger millet representing its major growing areas in Ethiopia was assessed. In total, 26 alleles were detected across the 10 loci, and the average observed number of alleles per locus was 5.6. The polymorphic information content (PIC) of the loci ranged from 0.045 (Elco-48) to 0.71 (UGEP-66). The level of genetic diversity did not differ much between the accessions with the mean gene diversity estimates ranging only from 0.44 (accession 216054) to 0.68 (accession 237443). Similarly, a narrow range of variation was recorded at the level of regional states ranging from 0.54 (Oromia) to 0.59 (Amhara and Tigray). Interestingly, the average gene diversity of the landrace accessions (0.57) was similar to that of the cultivars (0.58). The analysis of molecular variance (AMOVA) revealed significant genetic variation both within and among accessions. The variation among the accessions accounted for 18.8% of the total variation (FST = 0.19; P < 0.001). Similarly, significant genetic variation was obtained among the geographic regions, accounting for 6.9% of the total variation (P < 0.001). The results of the cluster, principal coordinate, and population structure analyses suggest a poor correlation between the genetic makeups of finger millet landrace populations and their geographic regions of origin, which in turn suggests strong gene flow between populations within and across geographic regions. This study contributed novel EST-SSR markers for their various applications, and those that were monomorphic should be tested in more diverse finger millet genetic resources.
  •  
5.
  • Hammenhag, Cecilia, et al. (författare)
  • QTL mapping for domestication-related characteristics in field cress (Lepidium campestre)—a novel oil crop for the Subarctic region
  • 2020
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Domestication of a new crop requires identification and improvement of desirable characteristics Field cress (Lepidium campestre) is being domesticated as a new oilseed crop, particularly for northern temperate regions.. In the present study, an F-2 mapping population and its F-3 progenies were used to identify quantitative trait loci (QTLs) for plant height (PH), number of stems per plant (NS), stem growth orientation (SO), flowering habit (FH), earliness (ER), seed yield per plant (SY), pod shattering resistance (SHR), and perenniality (PE). A highly significant correlation (p < 0.001) was observed between several pairs of characteristics, including SY and ER (negative) or ER and PE (positive). The inclusive composite interval mapping approach was used for QTL mapping using 2330 single nucleotide polymorphism (SNP) markers mapped across the eight field cress linkage groups. Nine QTLs were identified with NS, PH, SO, and PE having 3, 3, 2, and 1 QTLs, explaining 21.3%, 29.5%, 3.8%, and 7.2% of the phenotypic variation, respectively. Candidate genes behind three of the QTLs and favorable marker alleles for different classes of each characteristic were identified. Following their validation through further study, the identified QTLs and associated favorable marker alleles can be used in marker-aided breeding to speed up the domestication of field cress.
  •  
6.
  • Mulugeta, Behailu, et al. (författare)
  • Marker-trait association analyses revealed major novel QTLs for grain yield and related traits in durum wheat
  • 2023
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The growing global demand for wheat for food is rising due to the influence of population growth and climate change. The dissection of complex traits by employing a genome-wide association study (GWAS) allows the identification of DNA markers associated with complex traits to improve the productivity of crops. We used GWAS with 10,045 single nucleotide polymorphism (SNP) markers to search for genomic regions associated with grain yield and related traits based on diverse panels of Ethiopian durum wheat. In Ethiopia, multi-environment trials of the genotypes were carried out at five locations. The genotyping was conducted using the 25k Illumina Wheat SNP array to explore population structure, linkage disequilibrium (LD), and marker-trait associations (MTAs). For GWAS, the multi-locus Fixed and Random Model Circulating Probability Unification (FarmCPU) model was applied. Broad-sense heritability estimates were high, ranging from 0.63 (for grain yield) to 0.97 (for thousand-kernel weight). The population structure based on principal component analysis, and model-based cluster analysis revealed two genetically distinct clusters with limited admixtures. The LD among SNPs declined within the range of 2.02-10.04 Mbp with an average of 4.28 Mbp. The GWAS scan based on the mean performance of the genotypes across the environments identified 44 significant MTAs across the chromosomes. Twenty-six of these MTAs are novel, whereas the remaining 18 were previously reported and confirmed in this study. We also identified candidate genes for the novel loci potentially regulating the traits. Hence, this study highlights the significance of the Ethiopian durum wheat gene pool for improving durum wheat globally. Furthermore, a breeding strategy focusing on accumulating favorable alleles at these loci could improve durum wheat production in the East African highlands and elsewhere.
  •  
7.
  • Osterman, Johanna, et al. (författare)
  • Insights Into the Genetic Diversity of Nordic Red Clover (Trifolium pratense) Revealed by SeqSNP-Based Genic Markers
  • 2021
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Red clover (Trifolium pratense) is one of the most important fodder crops worldwide. The knowledge of genetic diversity among red clover populations, however, is under development. This study provides insights into its genetic diversity, using single nucleotide polymorphism (SNP) markers to define population structure in wild and cultivated red clover. Twenty-nine accessions representing the genetic resources available at NordGen (the Nordic gene bank) and Lantmännen (a Swedish agricultural company with a red clover breeding program) were used for this study. Genotyping was performed via SeqSNP, a targeted genotype by sequencing method that offers the capability to target specific SNP loci and enables de novo discovery of new SNPs. The SNPs were identified through a SNP mining approach based on coding sequences of red clover genes known for their involvement in development and stress responses. After filtering the genotypic data using various criteria, 623 bi-allelic SNPs, including 327 originally targeted and 296 de novo discovered SNPs were used for population genetics analyses. Seventy-one of the SNP loci were under selection considering both Hardy-Weinberg equilibrium and pairwise FST distributions. The average observed heterozygosity (HO), within population diversity (HS) and overall diversity (HT) were 0.22, 0.21 and 0.22, respectively. The tetraploids had higher average HO (0.35) than diploids (0.21). The analysis of molecular variance (AMOVA) showed low but significant variation among accessions (5.4%; P < 0.001), and among diploids and tetraploids (1.08%; P = 0.02). This study revealed a low mean inbreeding coefficient (FIS = −0.04) exhibiting the strict outcrossing nature of red clover. As per cluster, principal coordinate and discriminant analyses, most wild populations were grouped together and were clearly differentiated from the cultivated types. The cultivated types of red clover had a similar level of genetic diversity, suggesting that modern red clover breeding programs did not negatively affect genetic diversity or population structure. Hence, the breeding material used by Lantmännen represents the major genetic resources in Scandinavia. This knowledge of how different types of red clover accessions relate to each other and the level of outcrossing and heterozygosity will be useful for future red clover breeding.
  •  
8.
  • Dida, Mulatu Geleta, et al. (författare)
  • Molecular and Genomic Tools Provide Insights on Crop Domestication and Evolution
  • 2016
  • Ingår i: Advances in Agronomy. - : Elsevier. - 0065-2113 .- 2213-6789. ; 135, s. 181-223
  • Forskningsöversikt (refereegranskat)abstract
    • Rapid progress in genomic research and the development of genome-wide molecular markers for various crops significantly improved our knowledge on plant domestication and evolution. Molecular markers and other genomic tools have been used to understand the evolutionary changes that converted wild plants into domesticated crops, and the identification of loci behind domestication syndrome traits will have significant importance in the fast-track domestication of new plants. The application of genomics- assisted selection in plant breeding programs has significantly contributed to efficient plant breeding for desirable traits. Genomic tools also facilitated the efficient identification of progenitors of crops as well as centers of domestication. Multiple genomic regions with signature of selection during plant domestication have been found in various crops. Extensive analyses of plant genomes revealed that genes underlying domestication syndrome traits show a significant loss of diversity, for example, up to 95% of genetic diversity in wild relatives has been lost during domestication process in extreme cases. Genomic research revealed repeated occurrence of polyploidization during plant evolution and various interesting events that occurred following polyploidization such as gene loss and silencing. The loss of most replicated genes through time and nonrandom retention of some duplicated genes that serve as signatures of polyploidy are among interesting changes in polyploid plant genomes. Further insights into the advances in our knowledge on plant domestication and evolution made through the use of DNA markers and genomic tools is provided in this paper.
  •  
9.
  • Gebeyehu Demissie, Adane, et al. (författare)
  • RNA-Seq Provides Novel Genomic Resources for Noug (Guizotia abyssinica) and Reveals Microsatellite Frequency and Distribution in Its Transcriptome
  • 2022
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomic resources and tools are essential for improving crops and conserving their genetic resources. Guizotia abyssinica (noug), an outcrossing edible oilseed crop, has highly limited genomic resources. Hence, RNA-Seq based transcriptome sequencing of 30 noug genotypes was performed to generate novel genomic resources and assess their usefulness. The genotypes include self-compatible and self-incompatible types, which differ in maturity time, photoperiod sensitivity, or oil content and quality. RNA-Seq was performed on Illumina HiSeq 2500 platform, and the transcript was reconstructed de novo, resulting in 409,309 unigenes. The unigenes were characterized for simple sequence repeats (SSRs), and served as a reference for single nucleotide polymorphism (SNP) calling. In total, 40,776 SSRs were identified in 35,639 of the 409,309 unigenes. Of these, mono, di, tri, tetra, penta and hexanucleotide repeats accounted for 55.4, 20.8, 21.1, 2.3, 0.2, and 0.2%, respectively. The average G+C content of the unigenes and their SSRs were 40 and 22.1%, respectively. The vast majority of mononucleotide repeat SSRs (97%) were of the A/T type. AG/CT and CCA/TGG were the most frequent di and trinucleotide repeat SSRs. A different number of single nucleotide polymorphism (SNP) loci were discovered in each genotype, of which 1,687 were common to all 30 genotypes and 5,531 to 28 of them. The mean observed heterozygosity of the 5,531 SNPs was 0.22; 19.4% of them had polymorphism information content above 0.30 while 17.2% deviated significantly from Hardy-Weinberg equilibrium (P < 0.05). In both cluster and principal coordinate analyses, the genotypes were grouped into four major clusters. In terms of population structure, the genotypes are best represented by three genetic populations, with significant admixture within each. Genetic similarity between self-compatible genotypes was higher, due to the narrow genetic basis, than that between self-incompatible genotypes. The genotypes that shared desirable characteristics, such as early maturity, and high oil content were found to be genetically diverse, and hence superior cultivars with multiple desirable traits can be developed through crossbreeding. The genomic resources developed in this study are vital for advancing research in noug, such as genetic linkage mapping and genome-wide association studies, which could lead to genomic-led breeding.
  •  
10.
  • Mulugeta, Behailu, et al. (författare)
  • Unlocking the genetic potential of Ethiopian durum wheat landraces with high protein quality: Sources to be used in future breeding for pasta production
  • 2024
  • Ingår i: Food and energy security. - 2048-3694. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The content and composition of the grain storage proteins in wheat determine to a high extent its end-use quality for pasta and bread production. This study aimed to evaluate the content and composition of the grain storage proteins in Ethiopian landraces and cultivars to contribute to future breeding toward improved pasta quality. Thus, 116 landraces and 34 cultivars originating from Ethiopia were grown in three locations, and the protein parameters were analyzed using size exclusion-high performance liquid chromatography (SE-HPLC). A considerable variation in the amount of the analyzed protein parameters was found. The genotypes, environments, and interactions contributed significantly (p < 0.001) to the differences obtained. The broad-sense heritability was high (0.75-0.98) for all protein parameters except for unextractable small monomeric protein (uSMP). Using the principal component analysis (PCA) to evaluate the impact of protein parameters and using either PCA or unweighted pair group method with arithmetic mean (UPGMA) to assess the impact of the genetic composition, the cultivar group was found to form a separate cluster. This indicates that durum wheat improvement in Ethiopia has relied on exotic materials, which might result from a narrow genetic base. Unlike most landraces, most released cultivars showed a high and stable gluten strength across environments. Two landraces, G057 and G107, were found genetically distinct from the released cultivars but with high and stable gluten. The two selected landraces might be of extremely high value for future use in durum wheat breeding programs, as they might be adapted to wide-ranging Ethiopian growing conditions, they might carry genes of relevance to withstand abiotic and biotic stresses, and they seem to hold essential protein properties, which might result in high-quality grains for industrial processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 54

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy