SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine) ;mspu:(conferencepaper)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine) > Konferensbidrag

  • Resultat 1-10 av 1914
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Munthe, Christian, 1962 (författare)
  • Etiska aspekter på regenerativ medicin : Ethical aspects on regenerative medicine
  • 2003
  • Ingår i: SNIB-konferensen 2003, Chalmers tekniska högskola, Göteborg, 16-18 maj 2003.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Inom den regenerativa medicinen strävar man efter att ersätta skadat eller sjukligt biologiskt mänskligt material (celler, organ, kroppsdelar) med nya biologiska komponenter. Området aktualiserar en rad etiska frågeställningar vad gäller (1) produktionen av ersättningsmaterialet (t.ex. embryonala stamceller eller införskaffande av transplantationsvävnad från donatorer), (2) risker i samband med försök på människa (genmodifierat material, material från djur), samt (3) gränserna för hur långt man bör gå i denna slags försök att förlänga människans livsspann. Föredraget ger en kort översikt över dessa frågeställningar, ståndpunkter och argument i debatten kring dem.
  •  
3.
  •  
4.
  •  
5.
  • Munthe, Christian, 1962 (författare)
  • Will IVF ever be the norm?
  • 2014
  • Ingår i: Future of IVF - A Brave New World? ESHRE symposium, September 26-27, Stockholm.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Rolfö, Linda, et al. (författare)
  • Predictors of Preference for the Activity-based Flexible Office
  • 2019
  • Ingår i: Human Systems Engineering and Design. - Cham : Springer. - 9783030020521 - 9783030020538 ; 876, s. 547-553
  • Konferensbidrag (refereegranskat)abstract
    • Activity-based Flexible Offices (A-FOs) are implemented with varying degree of success. Employees relocate from cell or open-plan offices, from different organizational backgrounds, varying design and implementation processes, and have different types of work tasks. This study aims at investigating whether preference for the A-FO correlate with these preconditions. The results from Chi-square tests and Spearman’s non-parametric correlation of post-relocation questionnaires distributed to 11 A-FO sites, showed that a high preference for the A-FO correlated strongest with an A-FO preference prior to relocation, being a former open-plan office occupier and with frequent performance of innovation. Low preference for the A-FO correlated with frequent performance of concentration demanding tasks. Working with tasks with high confidentiality did not predict the preference ratings.
  •  
7.
  • Mamontov, Eugen, 1955 (författare)
  • Homeorhesis and evolutionary properties of living systems: From ordinary differential equations to the active-particle generalized kinetics theory
  • 2006
  • Ingår i: 10th Evolutionary Biology Meeting at Marseilles, 20-22 September 2006, Marseilles, France.
  • Konferensbidrag (refereegranskat)abstract
    • Advanced generalized-kinetic-theory (GKT) models for biological systems are developed for populations of active (or living) particles [1]-[5]. These particles are described with both the stochastic variables common in kinetic theory (such as time, the particle random location and velocity) and the stochastic variables related to the internal states of an active particle. Evolution of these states represents biological, ecological, or social properties of the particle behavior. Paper [6] analyzes a number of the well-known statistical-mechanics approaches and shows that the active-particle GKT (APGKT) is the only treatment capable of modelling living systems. Work [2] summarizes the significance of the notion of an active particle in kinetic models. This notion draws attention to the features distinguishing living matter from nonliving matter. They are discussed by many authors (e.g., [7]-[15], [1]-[3], [6], [16]-[18]). Work [11] considers a lot of differences between living and nonliving matters, and the limitations of the modelling approaches developed for nonliving matter. Work [6] mainly focuses on the comparison of a few theoretical mechanics treatments in terms of the key living-matter properties formulated in [15]. One of the necessary properties of the evolution of living systems is homeorhesis. It is, loosely speaking, a peculiar qualitative and quantitative insensitivity of a living system to the exogenous signals acting on it. The earlier notion, homeostasis, was introduced by W. B. Cannon in 1926 who discussed the phenomenon in detail later [7]. Homeorhesis introduced by C. H. Waddington [8, p. 32] generalizes homeostasis and is well known in biology [8], [9], [12]. It is an inherent part of mathematical models for oncogeny (e.g., [16]-[18], [6, Appendix]). Homeorhesis is also discussed in [3, Section 4] in connection with APGKT. Homeorhesis is documented in ecology (e.g., [11], [13, the left column on p. 675]) where it is one of the key notions of the strong Gaia theory, a version of the Gaia theory (e.g., [14, Chapter 8]). The strong Gaia theory “states that the planet with its life, a single living system, is regulated in certain aspects by that life” [14, p. 124]. The very origin of the name “Gaia” is related to homeorhesis or homeostasis [14, p. 118]. These notions are also used in psychology and sociology. If evolution of a system is not homeorhetic, the system can not be living. Work [6, Appendix] derives a preliminary mathematical formulation of homeorhesis in terms of the simplest dynamical systems, i.e. ordinary differential equations (ODEs). The present work complements, extended, and further specify the approach of [6, Appendix]. The work comprises the two main parts. The first part develops the sufficient conditions for ODE systems to describe homeorhesis, and suggests a fairly general structure of the ODE model. It regards homeorhesis as piecewise homeostasis. The model can be specified in different ways depending on specific systems and specific purposes of the analysis. An example of the specification is also noted (the PhasTraM nonlinear reaction-diffusion model for hyperplastic oncogeny [16]-[18]). The second part of the work discusses implementation of the above homeorhesis ODE model in terms of a special version [3] of APGKT (see above). The key feature of this version is that the components of a living population need not be discrete: the subdivision into the components is described with a general, continuous-discrete probability distribution (see also [6]). This enables certain properties of living matter noted in [15]. Moreover, the corresponding APGKT model presents a system of, firstly, a generalized kinetic equation for the conditional distribution function conditioned by the internal states of the population and, secondly, Ito's stochastic differential equations for these states. This treatement employs the results on nonstationary invariant diffusion stochastic processes [19]. The second part of the work also stresses that APGKT is substantially more important for the living-matter analysis than in the case of nonliving matter. One of the reasons is certain limitations in experimental sampling of the living-system modes presented with stochastic processes. A few directions for future research are suggested as well. REFERENCES: [1] Bellomo, N., Bellouquid, A. and Delitala, M., 2004, Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition, Math. Models Methods Appl. Sci., 14, 1683-1733. [2] Bellomo, N., 2006, New hot Paper Comments, Essential Science Indicators, http://www.esi-topics.com/nhp/2006 /may- 06-NicolaBellomo.html. [3] Willander, M., Mamontov, E. and Chiragwandi, Z., 2004, Modelling living fluids with the subdivision into the components in terms of probability distributions, Math. Models Methods Appl. Sci. 14, 1495-1520. [4] Bellomo, N. and Maini, P.K., 2005, Preface and the Special Issue “Multiscale Cancer Modelling-A New Frontier in Applied Mathematics”, Math. Models Methods Appl. Sci., 15, iii-viii. [5] De Angelis, E. and Delitala, M., 2006, Modelling complex systems in applied sciences: Methods and tools of the mathematical kinetic theory for active particles. Mathl Comput. Modelling, 43, 1310-1328. [6] Mamontov, E., Psiuk-Maksymowicz, K. and Koptioug, A., 2006, Stochastic mechanics in the context of the properties of living systems, Mathl Comput. Modelling, Article in Press, 13 pp. [7] Cannon, W.B., 1932, The Wisdom of the Body (New York: Norton). [8] Waddington, C.H., 1957, The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology (London, George Allen and Unwin). [9] Waddington, C.H., 1968, Towards a theoretical biology, Nature, 218, 525-527. [10] Cotnoir, P.-A., 1981, La compétence environnementale: Une affaire d’adaptation. Séminaire en écologie behaviorale, Univeristé du Québec, Montralé. Available online at: http://pac.cam.org/culture.doc . [11] O’Neill, R.V., DeAngelis, D.L., Waide, J.B. and Allen, T.F.H., 1986, A Hierarchical Concept of Ecosystems, Princeton: Princeton Univ. Press). [12] Sauvant, D., 1992, La modélisation systémique en nutrition, Reprod. Nutr. Dev., 32, 217-230. [13] Christensen, N.L., Bartuska, A.M., Brown, J.H., Carpenter, S., D'Antonio, C., Francis, R., Franklin, J.F., MacMahon, J.A., Noss, R.F., Parsons, D.J., Peterson, C.H., Turner, M.G. and Woodmansee, R.G., 1996, The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management, Ecological Applications, 6, 665-691. Available online at: http://www.esa.org/pao/esaPositions/Papers/ReportOfSBEM.php. [14] Margulis, L., 1998, Symbiotic Planet. A New Look at Evolution (Amherst: Sciencewriters). [15] Hartwell, L.H., Hopfield, J.J., Leibler, S. and Murray, A.W., 1999, From molecular to modular cell biology, Nature, 402, C47-C52. [16] Mamontov, E., Koptioug, A.V. and Psiuk-Maksymowicz, K., 2006, The minimal, phase-transition model for the cell- number maintenance by the hyperplasia-extended homeorhesis, Acta Biotheoretica, 54, 44 pp., (no. 2, May-June, accepted). [17] Psiuk-Maksymowicz, K. and Mamontov, E., 2005, The time-slices method for rapid solving the Cauchy problem for nonlinear reaction-diffusion equations in the competition of homeorhesis with genotoxically activated hyperplasia, In: European Conference on Mathematical and Theoretical Biology - ECMTB05 (July 18-22, 2005) Book of Abstracts, Vol.1 (Dresden: Center for Information Services and High Performance Computing, Dresden Univ. Technol.), p. 429 (http://www.ecmtb05.org/). [18] Psiuk-Maksymowicz, K. and Mamontov, E., 2006, The homeorhesis-based modelling and fast numerical analysis for oncogenic hyperplasia under radiation therapy, submitted. [19] Mamontov, E., 2005, Nonstationary invariant distributions and the hydrodynamic-style generalization of the Kolmogorov-forward/Fokker-Planck equation, Appl. Math. Lett. 18 (9) 976-982.
  •  
8.
  • Munthe, Christian, 1962, et al. (författare)
  • Balancing health and environmental impact in antibiotic resistance policy
  • 2022
  • Ingår i: 16th World Congress of Bioethics, University of Basel, July 20-22, 2022.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • There is an increase of suggestions that healthcare policies should pay more attention to environmental impact. However, this raises a question of how to analyze and manage conflicts between environmental considerations and immediate health considerations. E.g., if drugs are prioritized not only on the basis of need, effect and cost-effectiveness, but also on the environmental impact pattern of its production and/or consumption, single patients may be denied effective therapies due to overarching structural concerns which are difficult to trace back to effects on these or any other single patient. At the same time, the overall environmental health impact of pharmaceutical pollution is recognized to be a major global public health threat, for instance, via its contribution to antibiotic resistance (ABR). While background philosophical theories may in theory answer how to balance these concerns, to produce an actual answer is challenging due to their level of abstraction. At the same time, standard ideas in operational healthcare ethics and public health ethics seem inadequate by themselves, as they capture only parts of the problem but are also problematic to combine, as they are based on conflicting perspectives and ethoses. This makes it difficult to produce an ethical analyses that could facilitate a solution to the problem of how to balance individual health and structural environmental concerns. This paper will use ABR as a case in point to describe this challenge in more detail, and present three rivalling ways forward.
  •  
9.
  • Mamontov, Eugen, 1955, et al. (författare)
  • Oncogenic hyperplasia caused by combination of various factors: A decision-support software for radionuclide therapy
  • 2007
  • Ingår i: Workshop "Mathematical Modelling and Analysis of Cancer Invasion of Tissues", Mar 26, 2007 - Mar 30, 2007, Dundee, Scotland.
  • Konferensbidrag (refereegranskat)abstract
    • The present work deals with the software based on the PhasTraM model [1] for oncogenic hyperplasia, the first stage of formation of any solid tumor. The work generalizes the related results of [2]-[6] and discusses application of the software for decision support in radionuclide therapy. The software capabilities to allow for combinations of various causes of oncogeny are emphasized. The causes comprise inflammation, immune dysfunction, and chronic psychological stress. The immune dysfunction is represented with hypogammaglobulenimia expressed in terms of the concentration of the immunoglobulin-G molecules. The level of chronic pychological stress is described with the concentration of the interleukin-6 molecules. The work considers how application of the software can support decisions on the specific radionuclide-therapy setting depending on the tissue-, organ-, and patient-specific data. This is illustrated by a number of numerical-simulation results, also the ones which include the effects of common and fractionation-based radionuclide-therapy modalities. A proper attention is paid to how specifically the input data can be prepared by prospective users of the software, i.e. the specialists who apply radionuclide therapy. The work also formulates a few directions for future research in connection with the features of the everyday work of the prospective users. REFERENCES: [1] E. Mamontov, K. Psiuk-Maksymowicz, A. Koptioug, 2006, Stochastic mechanics in the context of the properties of living systems, Mathl Comput. Modelling, 44(7-8) 595-607. [2] E. Mamontov, A. V. Koptioug, K. Psiuk-Maksymowicz, 2006, The minimal, phase-transition model for the cell-number maintenance by the hyperplasia-extended homeorhesis, Acta Biotheoretica, 54(2) 61-101. [3] K. Psiuk-Maksymowicz and E. Mamontov, 2006, The homeorhesis-based modelling and fast numerical analysis for oncogenic hyperplasia under radiotherapy, Mathl Comput. Modelling, Special Issue
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 1914
Typ av publikation
Typ av innehåll
refereegranskat (1251)
övrigt vetenskapligt/konstnärligt (655)
populärvet., debatt m.m. (8)
Författare/redaktör
Eiken, Ola (82)
Borrebaeck, Carl (76)
Backhaus, Thomas, 19 ... (48)
Mekjavic, I.B. (45)
Aronsson, Patrik, 19 ... (44)
Ohlin, Mats (37)
visa fler...
Wingren, Christer (35)
Keramidas, Michail E ... (33)
Winder, Michael, 198 ... (33)
Gennser, Mikael (33)
Blom, Anna (28)
Forssell-Aronsson, E ... (28)
Spetz, Johan (27)
Tobin, Gunnar, 1954 (27)
Munthe, Christian, 1 ... (25)
Schouenborg, Jens (25)
Rudner, Mary (24)
Kempe, Maria (24)
Schagatay, Erika (23)
Helou, Khalil, 1966 (23)
Lunner, Thomas (23)
Carlsson, Thomas, 19 ... (22)
Mekjavic, IB (21)
Debevec, T. (21)
Norrbrand, Lena (20)
Langen, Britta (20)
Grönkvist, Mikael (20)
Petersen, Anne, 1962 (19)
Karlsson, Jan-Olof, ... (19)
Davidsson, Johan, 19 ... (18)
Rönnberg, Jerker (17)
Sjöstrand, Johan, 19 ... (16)
James, Peter (16)
Amon, M (16)
Kounalakis, S.N. (16)
Mattsson, C. Mikael (16)
Thomsen, Peter, 1953 (15)
Schöll, Michael, 198 ... (15)
Zetterberg, Madelein ... (14)
Trobos, Margarita, 1 ... (14)
Jirstrand, Mats, 196 ... (14)
Risling, Mårten (14)
Jörntell, Henrik (14)
Celander, Malin C., ... (14)
Kölegård, Roger (13)
Nilsson, Ola, 1957 (12)
Omar, Omar (12)
Wessberg, Johan, 196 ... (12)
Suyatin, Dmitry (12)
Stenfelt, Stefan, 19 ... (12)
visa färre...
Lärosäte
Lunds universitet (573)
Göteborgs universitet (524)
Kungliga Tekniska Högskolan (220)
Chalmers tekniska högskola (157)
Linköpings universitet (87)
Uppsala universitet (77)
visa fler...
Örebro universitet (61)
Sveriges Lantbruksuniversitet (61)
Umeå universitet (51)
Karolinska Institutet (49)
Mittuniversitetet (44)
Stockholms universitet (35)
Linnéuniversitetet (30)
Gymnastik- och idrottshögskolan (28)
Högskolan i Borås (14)
Högskolan i Halmstad (13)
Malmö universitet (11)
Högskolan Dalarna (8)
Högskolan i Skövde (7)
RISE (7)
Luleå tekniska universitet (6)
Jönköping University (3)
Högskolan Kristianstad (2)
Högskolan i Gävle (2)
Karlstads universitet (2)
Högskolan Väst (1)
Mälardalens universitet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (1821)
Svenska (85)
Portugisiska (4)
Tyska (1)
Franska (1)
Spanska (1)
visa fler...
Polska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (1913)
Naturvetenskap (275)
Teknik (131)
Samhällsvetenskap (83)
Humaniora (47)
Lantbruksvetenskap (19)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy