SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Immunology in the medical area) ;pers:(Holmberg Dan)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Immunology in the medical area) > Holmberg Dan

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kadri, Nadir, 1977, et al. (författare)
  • CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes.
  • 2012
  • Ingår i: Journal of immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 188:7, s. 3138-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic β cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24αβ type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24αβ NKT cells exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24αβ NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred in the pancreas draining lymph nodes. To our knowledge, these results provide for the first time cellular and molecular information on how type II CD1d-restricted NKT cells regulate T1D.
  •  
2.
  • Duarte, Nadia, et al. (författare)
  • Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells.
  • 2004
  • Ingår i: Journal of Immunology. - 0022-1767 .- 1550-6606. ; 173:5, s. 3112-3118
  • Tidskriftsartikel (refereegranskat)abstract
    • A role for regulatory lymphocytes has been demonstrated in the pathogenesis of type 1 diabetes in the NOD mouse but the nature of these cells is debated. CD1d-restricted NKT lymphocytes have been implicated in this process. Previous reports of reduced diabetes incidence in NOD mice in which the numbers of NKT cells are artificially increased have been attributed to the enhanced production of IL-4 by these cells and a role for classical NKT cells, using the Valpha14-Jalpha18 rearrangement. We now show that overexpression in NOD mice of CD1d-restricted TCR Valpha3.2(+)Vbeta9(+) NKT cells producing high levels of IFN-gamma but low amounts of IL-4 leads to prevention of type 1 diabetes, demonstrating a role for nonclassical CD1d-restricted NKT cells in the regulation of autoimmune diabetes.
  •  
3.
  • Lundholm, Marie, et al. (författare)
  • Variation in the Cd3 zeta (Cd247) gene correlates with altered T cell activation and is associated with autoimmune diabetes.
  • 2010
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 184:10, s. 5537-5544
  • Tidskriftsartikel (refereegranskat)abstract
    • Tuning of TCR-mediated activation was demonstrated to be critical for lineage fate in T cell development, as well as in the control of autoimmunity. In this study, we identify a novel diabetes susceptibility gene, Idd28, in the NOD mouse and provide evidence that Cd3zeta (Cd247) constitutes a prime candidate gene for this locus. Moreover, we show that the allele of the Cd3zeta gene expressed in NOD and DBA/2 mouse strains confers lower levels of T cell activation compared with the allele expressed by C57BL/6 (B6), BALB/c, and C3H/HeJ mice. These results support a model in which the development of autoimmune diabetes is dependent on a TCR signal mediated by a less-efficient NOD allele of the Cd3zeta gene.
  •  
4.
  • van Dijk-Härd, Iris, et al. (författare)
  • Age-related impaired affinity maturation and differential D-JH gene usage in human VH6-expressing B lymphocytes from healthy individuals
  • 1997
  • Ingår i: European Journal of Immunology. - : Wiley-VCH Verlagsgesellschaft. - 0014-2980 .- 1521-4141. ; 27:6, s. 1381-1386
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate the basic molecular events underlying humoral immunity during ontogeny and senescence, we analyzed a panel of 179 polymerase chain reaction-derived VH6-D-JH rearrangements from cord blood, peripheral blood, and spleen. Nucleotide sequence analysis of the CDR3 region shows that there is a difference in D and JH gene usage in functional rearrangements between lymphocytes from peripheral blood and spleen. Analysis of the VH6 gene shows that the mutational frequencies rise from 0.81% in cord blood to 1.96% in peripheral blood lymphocytes derived from young adults, and decrease to 0.80% in samples from individuals older than 50 years. The number of rearrangements carrying mutations follows a similar pattern: 22% in cord blood, 73% in the age group 20-49 years, and 57% in the age group over 50 years. The mutational frequencies among the mutated genes are, however, similar for cord blood and young adults, 2.76% and 2.51%, respectively, and 1.3% in older adults. These data show an age-related impaired affinity maturation which might relate to the decrease in immunological responsiveness among the elderly.
  •  
5.
  • Bergman, Marie-Louise, et al. (författare)
  • Diabetes protection and restoration of thymocyte apoptosis in NOD Idd6 congenic strains
  • 2003
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 52:7, s. 1677-1682
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes in the nonobese diabetic (NOD) mouse is a multifactorial and polygenic disease. The NOD-derived genetic factors that contribute to type 1 diabetes are named Idd (insulin-dependent diabetes) loci. To date, the biological functions of the majority of the Idd loci remain unknown. We have previously reported that resistance of NOD immature thymocytes to depletion by dexamethazone (Dxm) maps to the Idd6 locus. Herein, we refine this phenotype using a time-course experiment of apoptosis induction upon Dxm treatment. We confirm that the Idd6 region controls apoptosis resistance in immature thymocytes. Moreover, we establish reciprocal Idd6 congenic NOD and B6 strains to formally demonstrate that the Idd6 congenic region mediates restoration of the apoptosis resistance phenotype. Analysis of the Idd6 congenic strains indicates that a 3-cM chromosomal region located within the distal part of the Idd6 region controls apoptosis resistance in NOD immature thymocytes. Together, these data support the hypothesis that resistance to Dxm-induced apoptosis in NOD immature thymocytes is controlled by a genetic factor within the region that also contributes to type 1 diabetes pathogenesis. We propose that the diabetogenic effect of the Idd6 locus is exerted at the level of the thymic selection process.
  •  
6.
  • Bergman, Marie-Louise, et al. (författare)
  • Low rate of proliferation in immature thymocytes of the non-obese diabetic mouse maps to the Idd6 diabetes susceptibility region
  • 2001
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 44:8, s. 1054-1061
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: The non-obese diabetic (NOD) mouse spontaneously develops T-cell-dependent autoimmune diabetes. This mouse strain has a number of immune dysfunctions related to T-cell development but so far there are no available data on the proliferation of NOD immature thymocytes. We therefore studied the thymocyte proliferation in the NOD mouse in discrete stages of T-cell development.Methods: We depleted thymocytes in vivo and analysed thymocyte proliferation during the thymus recovery from depletion. We used co-segregation analysis and quantitative loci trait analysis to investigate the genetic control of proliferation impairments in NOD thymocytes.Results: Immature thymocytes of female NOD mice proliferate with a relatively low rate compared to non-autoimmune C57Bl/6 mice. This aberrant proliferation was most pronounced in CD4– /loCD8+ cells differentiating from the CD4–CD8– to the CD4+CD8+ stage. A genetic mapping study using an F2 intercross between the NOD and the C57BL/6 strains showed that a major locus controlling this trait is linked to the insulin-dependent diabetes susceptibility locus Idd6.Conclusion/interpretation: Our results suggest that impairment of proliferation of immature thymocytes is one possible mechanism through which the Idd6 locus contributes to the pathogenesis of diabetes.
  •  
7.
  • Duarte, Nádia, 1977- (författare)
  • Molecular and cellular mechanisms contributing to the pathogenesis of autoimmune diabetes
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Type 1 diabetes is an autoimmune disorder determined both by genetic and environmental factors. The Non-obese diabetic (NOD) mouse is one of the best animal models of this disease. It spontaneously develops diabetes through a process resembling the human pathogenesis. The strong association of NOD Type 1 diabetes to the MHC region and the existence of other diabetes susceptibility loci are also in parallel with the human disease. The identity of the genetic factors and biological function mediated by these loci remain, however, largely unknown. Like in other autoimmune diseases, defects in tolerance mechanisms are thought to be at the origin of type 1 diabetes. Accordingly, defects in both central and peripheral tolerance mechanisms have been reported in the NOD mouse model. Using a subphenotype approach that aimed to dissect the disease into more simple phenotypes, we have addressed this issue. In paper I, we analyzed resistance to dexamethasone-induced apoptosis in NOD immature thymocytes previously mapped to the Idd6 locus. Using a set of congenic mice carrying B6-derived Idd6 regions on a NOD background and vice-versa we could restrict the Idd6 locus to an 8cM region on the telomeric end of chromosome 6 and the control of apoptosis resistance to a 3cM region within this area. In paper II, further analysis of diabetes incidence in these congenic mice separated the genes controlling these two traits, excluding the region controlling the resistance to apoptosis as directly mediating susceptibility to diabetes. These results also allowed us to further restrict the Idd6 locus to a 3Mb region. Expression analysis of genes in this chromosomal region highlighted the Lrmp/Jaw1 gene as a prime candidate for Idd6. Lrmp encodes an endoplasmatic reticulum resident protein. Papers III and IV relate to peripheral tolerance mechanisms. Several T cell populations with regulatory functions have been implicated in type 1 diabetes. In paper III, we analyzed NOD transgenic mice carrying a diverse CD1d-restricted TCR αVa3.2b9), named 24abNOD mice. The number of nonclassical NKT cells was found to be increased in these mice and almost complete protection from diabetes was observed. These results indicate a role for nonclassical NKT cells in the regulation of autoimmune diabetes. In paper IV, we studied the effects of introducing the diverse CD1d-restricted TCR (Va3.2b9) in immunodeficient NOD Rag-/- mice (24abNODRag-/- mice). This resulted in a surprising phenotype with inflammation of the ears and augmented presence of mast cells as well as spleenomegaly and hepatomegaly associated with extended fibrosis and increased numbers of mast cells and eosinophils in the tissues. These observations supported the notion that NKT cells constitute an “intermediary” cell type, not only able to elicit the innate immune system to mount an inflammatory response, but also able to interact with the adaptive immune system affecting the action of effector T cells in an autoimmune situation. In this context the 24abNODRag-/- mice provide an appropriate animal model for studying the interaction of NKT cells with both innate and adaptive components of the immune systemα.
  •  
8.
  • Rolf, Julia, et al. (författare)
  • The enlarged population of marginal zone/CD1d(high) B lymphocytes in nonobese diabetic mice maps to diabetes susceptibility region Idd11.
  • 2005
  • Ingår i: Journal of Immunology. - 0022-1767 .- 1550-6606. ; 174:8, s. 4821-4827
  • Tidskriftsartikel (refereegranskat)abstract
    • The NOD mouse is an important experimental model for human type 1 diabetes. T cells are central to NOD pathogenesis, and their function in the autoimmune process of diabetes has been well studied. In contrast, although recognized as important players in disease induction, the role of B cells is not clearly understood. In this study we characterize different subpopulations of B cells and demonstrate that marginal zone (MZ) B cells are expanded 2- to 3-fold in NOD mice compared with nondiabetic C57BL/6 (B6) mice. The NOD MZ B cells displayed a normal surface marker profile and localized to the MZ region in the NOD spleen. Moreover, the MZ B cell population developed early during the ontogeny of NOD mice. By 3 wk of age, around the time when autoreactive T cells are first activated, a significant MZ B cell population of adult phenotype was found in NOD, but not B6, mice. Using an F2(B6 x NOD) cross in a genome-wide scan, we map the control of this trait to a region on chromosome 4 (logarithm of odds score, 4.4) which includes the Idd11 and Idd9 diabetes susceptibility loci, supporting the hypothesis that this B cell trait is related to the development of diabetes in the NOD mouse.
  •  
9.
  • Bergman, Marie-Louise, et al. (författare)
  • CTLA-4-/- mice display T cell-apoptosis resistance resembling that ascribed to autoimmune-prone non-obese diabetic (NOD) mice
  • 2001
  • Ingår i: Journal of Autoimmunity. - : Elsevier. - 0896-8411 .- 1095-9157. ; 16:2, s. 105-113
  • Tidskriftsartikel (refereegranskat)abstract
    • The genes conferring susceptibility to autoimmune (insulin-dependent) diabetes mellitus (IDDM) are, in most cases, not defined. Among the loci so far identified as associated with murine IDDM (Idd1-19), only the nature of Idd1 has been assessed. Here we show that thymocytes and peripheral lymphocytes of the non-obese diabetic (NOD) mouse are relatively resistant to apoptosis induced by gamma-irradiation. By linkage analysis of F2 progeny mice, we map this trait to a locus on chromosome 1 containing the Idd5 diabetes susceptibility region. By the use of congenic mice, we confirm the linkage data and map this locus to a 6 cM region on proximal chromosome 1. Ctla4, being localized in this chromosomal region and mediating crucial functions in T cell biology, is a logical candidate gene in the Idd5 susceptibility region. In line with this, we demonstrate that T cells from Ctla4(-/-)deficient mice show a similar resistance to gamma-irradiation-induced apoptosis as observed in the NOD mice. This reinforces the notion that CTLA-4 contributes to the pathogenesis of autoimmune diabetes.
  •  
10.
  • Korpos, Eva, et al. (författare)
  • The Peri-islet Basement Membrane, a Barrier to Infiltrating Leukocytes in Type 1 Diabetes in Mouse and Human.
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:2, s. 531-42
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide the first comprehensive analysis of the extracellular matrix (ECM) composition of peri-islet capsules, composed of the peri-islet basement membrane (BM) and subjacent interstitial matrix (IM), in development of type 1 diabetes in NOD mice and in human type 1 diabetes. Our data demonstrate global loss of peri-islet BM and IM components only at sites of leukocyte infiltration into the islet. Stereological analyses reveal a correlation between incidence of insulitis and the number of islets showing loss of peri-islet BM versus islets with intact BMs, suggesting that leukocyte penetration of the peri-islet BM is a critical step. Protease- and protease inhibitor-specific microarray analyses (CLIP-CHIP) of laser-dissected leukocyte infiltrated and noninfiltrated pancreatic islets and confirmatory quantitative real time PCR and protein analyses identified cathepsin S, W, and C activity at sites of leukocyte penetration of the peri-islet BM in association with a macrophage subpopulation in NOD mice and human type 1 diabetic samples and, hence, potentially a novel therapeutic target specifically acting at the islet penetration stage. Interestingly, the peri-islet BM and underlying IM are reconstituted once inflammation subsides, indicating that the peri-islet BM-producing cells are not lost due to the inflammation, which has important ramifications to islet transplantation studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26
Typ av publikation
tidskriftsartikel (23)
doktorsavhandling (3)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Bergman, Marie-Louis ... (7)
Mayans, Sofia (4)
Lejon, Kristina, 196 ... (4)
Schmidt-Christensen, ... (4)
Holmberg, Dan, 1954- (4)
visa fler...
Duarte, Nadia (4)
Motta, Vinicius (4)
Ivars, Fredrik (3)
Sorokin, Lydia (3)
Cardell, Susanna, 19 ... (3)
Söderström, Ingegerd (3)
Nilsson, Julia (3)
Hansen, Lisbeth (3)
Penha-Gonçalves, Car ... (3)
Feld, Sari (2)
Campino, Susana (2)
Lundholm, Marie, 197 ... (2)
Nilsson, Maria (1)
Overall, Christopher ... (1)
Cilio, Corrado M (1)
Harris, Robert A (1)
Boitard, Christian (1)
Aksel Jacobsen, Frej ... (1)
Scherer, Alexander N ... (1)
Mouritsen, Jeppe (1)
Bragadóttir, Hera (1)
Bäckström, B. Thomas (1)
Sardar, Samra (1)
Koleske, Anthony J. (1)
Andersson, Åsa, 1960 ... (1)
Rozell, B (1)
Larefalk, Åsa (1)
Palmqvist, Richard (1)
Löfgren, Anna (1)
Colucci, F (1)
Tahvili, Sahar (1)
Gorodkin, Jan (1)
Eriksson, Maria (1)
Stenström, Martin (1)
Pociot, Flemming (1)
Grundström, Thomas (1)
Eriksson, Björn (1)
Leanderson, Tomas (1)
Berntman, Emma (1)
Erttmann, Saskia F. (1)
Parsa, Roham (1)
Lamhamedi-Cherradi, ... (1)
Colucci, Francesco (1)
Garchon, Henri-Jean (1)
visa färre...
Lärosäte
Umeå universitet (18)
Lunds universitet (12)
Karolinska Institutet (4)
Göteborgs universitet (3)
Högskolan i Halmstad (1)
Stockholms universitet (1)
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (26)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy