SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Neurosciences) ;pers:(Björklund A)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Neurosciences) > Björklund A

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dunnett, S. B, et al. (författare)
  • Mechanisms and use of neural transplants for brain repair
  • 2017
  • Ingår i: Functional Neural Transplantation IV Translation to Clinical Application, Part A. - : Elsevier. - 9780128117385 ; 230, s. 1-51
  • Bokkapitel (refereegranskat)abstract
    • Under appropriate conditions, neural tissues transplanted into the adult mammalian brain can survive, integrate, and function so as to influence the behavior of the host, opening the prospect of repairing neuronal damage, and alleviating symptoms associated with neuronal injury or neurodegenerative disease. Alternative mechanisms of action have been postulated: nonspecific effects of surgery; neurotrophic and neuroprotective influences on disease progression and host plasticity; diffuse or locally regulated pharmacological delivery of deficient neurochemicals, neurotransmitters, or neurohormones; restitution of the neuronal and glial environment necessary for proper host neuronal support and processing; promoting local and long-distance host and graft axon growth; formation of reciprocal connections and reconstruction of local circuits within the host brain; and up to full integration and reconstruction of fully functional host neuronal networks. Analysis of neural transplants in a broad range of anatomical systems and disease models, on simple and complex classes of behavioral function and information processing, have indicated that all of these alternative mechanisms are likely to contribute in different circumstances. Thus, there is not a single or typical mode of graft function; rather grafts can and do function in multiple ways, specific to each particular context. Consequently, to develop an effective cell-based therapy, multiple dimensions must be considered: the target disease pathogenesis; the neurodegenerative basis of each type of physiological dysfunction or behavioral symptom; the nature of the repair required to alleviate or remediate the functional impairments of particular clinical relevance; and identification of a suitable cell source or delivery system, along with the site and method of implantation, that can achieve the sought for repair and recovery.
  •  
2.
  • Bassant, M H, et al. (författare)
  • Electrophysiological and pharmacological properties of neurons within solid basal forebrain transplants in the rat brain
  • 1988
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993. ; 460:1, s. 8-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrophysiological and pharmacological properties of neurons within solid basal forebrain transplants were studied in adult rats anesthetized with urethane. No specific topography of the neurons recorded was observed within the graft. The mean spontaneous activity of the grafted neurons (GNs) was relatively low (4.9 impulses/s) but not unlike that of other central neurons in situ. A large proportion of GNs fired with regular discharges, but other modes of discharge were also observed. A few rhythmically bursting GNs were recorded having a discharge pattern very much like that of the rhythmically bursting medial septal neurons. The responses of GNs to glutamate, gamma-aminobutyric acid, acetylcholine, serotonin and norepinephrine was fairly similar to those described in other central structures.
  •  
3.
  • Björklund, A, et al. (författare)
  • Reafferentation of the subcortically denervated hippocampus as a model for transplant-induced functional recovery in the CNS
  • 1990
  • Ingår i: Progress in Brain Research. - 0079-6123. ; 83, s. 411-426
  • Forskningsöversikt (refereegranskat)abstract
    • Subcortical deafferentation of the hippocampal formation is known to induce profound behavioural deficits. Transplants of fetal septal or brainstem tissue are capable of restoring some aspects of normal physiological and behavioural function in subcortically deafferented (i.e. fimbria-fornix or septal lesioned) rats. Such grafts have been shown to re-establish extensive new afferent inputs to the denervated hippocampal formation. As shown for grafted cholinergic and noradrenergic neurons, the ingrowing axons form laminar innervation patterns which closely mimic those of the normal cholinergic and noradrenergic innervations. The ingrowth appears to be very precisely regulated by the denervated target: each neuron type produces distinctly different innervation patterns; the growth is inhibited by the presence of an intact innervation of the same type; and it is stimulated by additional denervating lesions. Both ultrastructually and electrophysiologically the graft-derived fibres have been seen to form extensive functional synaptic contacts. Biochemically, cholinergic septal grafts and noradrenergic locus coeruleus grafts restore transmitter synthesis and turnover in the reinnervated hippocampus. Intracerebral microdialysis has revealed that acetylcholine and noradrenaline release is restored to normal or supranormal levels in the graft-reinnervated hippocampus, and that the grafted neurons can be activated in a normal way from the host through behavioural activation induced by sensory stimulation or electrical stimulation of the lateral habenula. These results indicate that the grafted monoaminergic neurons can restore tonic regulatory neurotransmission at previously denervated synaptic sites even when they are implanted into the ectopic brain sites. Such functional reafferentation may be sufficient for at least partial restoration of function in the subcortically deafferented hippocampus.
  •  
4.
  • Brundin, P, et al. (författare)
  • Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson's disease
  • 1986
  • Ingår i: Experimental Brain Research. - 0014-4819. ; 65:1, s. 40-235
  • Tidskriftsartikel (refereegranskat)abstract
    • The ventral mesencephalon, containing the developing dopaminergic neurons of the substantia nigra-ventral tegmental region, was obtained from aborted human fetuses of 9-19 weeks of gestation. The tissue was grafted into the striatum of rats previously subjected to a 6-hydroxydopamine lesion of the mesostriatal dopamine pathway. The graft recipients were immunosuppressed by daily injections of Cyclosporin A. Amphetamine-induced motor asymmetry was reduced, and finally totally reversed, only in rats receiving grafts from the 9-week old fetal donor. The fluorescence microscopic analysis revealed large numbers of surviving dopamine neurons, and extensive fiber outgrowth into the host striatum, in these rats. By contrast, rats receiving grafts from 11-19 week old donors had at most only few surviving dopamine neurons. These results indicate that human fetal mesencephalic tissue may be an efficient source of dopamine neurons for functional intracerebral grafting in patients with Parkinson's disease.
  •  
5.
  •  
6.
  • Brundin, P, et al. (författare)
  • Cyclosporin A increases survival of cross-species intrastriatal grafts of embryonic dopamine-containing neurons
  • 1985
  • Ingår i: Experimental Brain Research. - 0014-4819. ; 60:1, s. 8-204
  • Tidskriftsartikel (refereegranskat)abstract
    • The survival and function of cross-species (mouse-to-rat) grafts of fetal mesencephalic dopamine (DA) neurons, implanted as a cell suspension in the striatum of rats with lesions of the mesostriatal DA system, have been studied in animals with and without immunosuppression induced by Cyclosporin A (CyA). At 6 weeks after grafting 3 out of 7 non-CyA treated animals showed some degree of graft survival and variable functional compensation. In those three animals an average of 92 DA neurons per graft was counted. In the grafted animals treated with daily CyA injections, all grafts survived and produced partial or complete functional compensation, and they had an average of 557 DA neurons per graft. It is concluded that intracerebral graft survival and function can be greatly improved by CyA treatment and that the immunological protection of neural transplants in the brain is only partial.
  •  
7.
  • Brundin, Patrik, et al. (författare)
  • Human fetal dopamine neurons grafted in a rat model of Parkinson's disease : immunological aspects, spontaneous and drug-induced behaviour, and dopamine release
  • 1988
  • Ingår i: Experimental Brain Research. - 0014-4819. ; 70:1, s. 192-208
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used a rat model of Parkinson's disease (PD) to address issues of importance for a future clinical application of dopamine (DA) neuron grafting in patients with PD. Human mesencephalic DA neurons, obtained from 6.5-8 week old fetuses, were found to survive intracerebral cell suspension xenografting to the striatum of rats immunosuppressed with Cyclosporin A. The grafts produced an extensive new DA-containing terminal network in the previously denervated caudate-putamen, and they normalized amphetamine-induced, apomorphine-induced and spontaneous motor asymmetry in rats with unilateral lesions of the mesostriatal DA pathway. Grafts from an 11.5-week old donor exhibited a lower survival rate and smaller functional effects. As assessed with the intracerebral dialysis technique the grafted DA neurons were found to restore spontaneous DA release in the reinnervated host striatum to normal levels. The neurons responded with large increases in extracellular striatal DA levels after the intrastriatal administration of the DA-releasing agent d-amphetamine and the DA-reuptake blocker nomifensine, although not to the same extent as seen in striata with an intact mesostriatal DA system. DA fiber outgrowth from the grafts was dependent on the localization of the graft tissue. Thus, grafts located within the striatum gave rise to an extensive axonal network throughout the whole host striatum, whereas grafted DA neurons localized in the neocortex had their outgrowing fibers confined within the grafts themselves. In contrast to the good graft survival and behavioural effects obtained in immunosuppressed rats, there was no survival, or behavioural effects, of human DA neurons implanted in rats that did not receive immunosuppression. In addition, we found that all the graft recipients were immunized, having formed antibodies against antigens present on human T-cells. This supports the notion that the human neurons grafted to the non-immunosuppressed rats underwent immunological rejection. Based on an estimation of the survival rate and extent of fiber outgrowth from the grafted human fetal DA neurons, we suggest that DA neurons that can be obtained from one fetus may be sufficient to restore significant DA neurotransmission unilaterally, in one putamen, in an immunosuppressed PD patient.
  •  
8.
  • Cenci, M A, et al. (författare)
  • Characterization of in vivo noradrenaline release from superior cervical ganglia or fetal locus coeruleus transplanted to the subcortically deafferented hippocampus in the rat
  • 1993
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 122:1, s. 73-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid grafts of autologous superior cervical ganglia (SCG) or fetal locus coeruleus (LC) were implanted unilaterally into a fimbria-fornix lesion cavity adjacent to the hippocampal formation after a 6-hydroxydopamine lesion of the intrinsic noradrenergic system. Twelve to 15 months after transplantation, one microdialysis probe was implanted in the dorsal hippocampus ipsilateral to the graft, and extracellular levels of noradrenaline (NA) were monitored during the application of pharmacological or behavioral stimuli. Age-matched intact and lesion-only animals served as controls. Morphological examination of the grafts was performed on sections processed for dopamine-beta-hydroxylase (DBH) immunohistochemistry. In the lesion-only controls, the hippocampus was totally devoid of DBH-immunoreactive fibers and hippocampal levels of NA were generally undetectable. Although both SCG and LC grafts gave rise to an extensive DBH-immunoreactive fiber ingrowth in the ipsilateral hippocampus, baseline NA release was strikingly different in the two graft groups, being markedly lower than normal in the SCG-grafted rats (3.5 +/- 0.1 fmol/30 microliters) and significantly higher than normal in the LC-grafted rats (44.5 +/- 12.3 fmol/30 microliters). The response to potassium-induced depolarization (100 mM KCl in the perfusion fluid), neuronal uptake blockade (5 microM desipramine), and sodium-channel blockade (1 microM TTX) was similar to normal in both graft groups. Exposure of the animals to mild (handling) or severe (immobilization) stressful stimuli significantly enhanced NA release in the intact controls, whereas no clear-cut effect could be detected in either graft group. Electrical stimulation of the medial septum, applied in an attempt to activate possible afferents to the grafts from the host septum, did not enhance NA release in any of the groups. The results show that grafts of both central and peripheral noradrenergic neurons can provide a source of steady-state NA release in the denervated hippocampus, but that the spontaneous activity of the grafted ganglionic neurons is very low compared to that of the LC neurons, probably due to the absence of a functional preganglionic input to the grafted SCG neurons. Although extracellular NA recovered from both the SCG- and the LC-grafted hippocampi is likely to derive from impulse-dependent neuronal release, it was largely unaffected by physiological stimuli applied to the host.
  •  
9.
  • Clarke, D J, et al. (författare)
  • Synaptic connections formed by grafts of different types of cholinergic neurons in the host hippocampus
  • 1990
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 107:1, s. 11-22
  • Tidskriftsartikel (refereegranskat)abstract
    • The present experiment was performed to determine whether different types of grafted central cholinergic neurons are able to form synaptic contacts with host hippocampal neurons. Grafts from the septal-diagonal band area, which contain the neurons that normally innervate the hippocampal formation, were compared to those from the nucleus basalis magnocellularis region (NBM), the striatum, the pontomesencephalic tegmentum of the brain stem, and the spinal cord. The regions were dissected from 14- to 16-day-old rat fetuses, and the same number of viable cells (35 x 10(4] from each of the different regions was stereotaxically injected as a cell suspension into the hippocampus of rats subjected to a complete fimbria-fornix lesion, transecting the intrinsic septohippocampal pathways. At 14 to 17 weeks after transplantation, the brains were processed for choline acetyltransferase (ChAT) immunocytochemistry at the light and electron microscopic levels and acetylcholinesterase (AChE) histochemistry at the light microscopic level. There was a great variation in the number of surviving ChAT-positive cells among the different graft types. The septal grafts contained the highest number of ChAT-positive cells, and the striatal grafts showed the lowest numbers. The NBM, brain stem, and spinal cord grafts were in between. The differences in the number of ChAT-positive neurons between the groups matched, in general, the differences found in the magnitude of graft-derived AChE-positive fiber growth into the host hippocampal formation. At the electron microscopical level, all types of grafts were capable of forming synaptic contacts with host elements, however, with vast differences in the number of synapses found. The septal grafts produced the highest number of contacts, whereas the striatal and spinal cord grafts produced very few contacts. The ultrastructure of the cholinergic fibers from grafts obtained from the forebrain areas, i.e., septum, NBM, and striatum all appeared normal, whereas brain stem and spinal cord grafts produced different types of anomalies. The results show that grafted cholinergic neurons, that normally do not innervate the hippocampus, can send axons and form synaptic contacts in the host hippocampus. The ability to reinnervate the denervated hippocampal target appears to be shared by the embryologically closely related forebrain cholinergic neuron types, i.e., the septal, NBM, and striatal neurons. The marked differences in overall fiber ingrowth and number of synapses observed between these different types of grafts could be explained largely on the basis of differences in survivability of each grafted neuron type. By contrast, the reinnervation obtained from the grafted brain stem and spinal cord neurons were both quantitatively and qualitatively abnormal.(ABSTRACT TRUNCATED AT 400 WORDS)
  •  
10.
  • Clarke, D J, et al. (författare)
  • Synaptogenesis of grafted cholinergic neurons
  • 1987
  • Ingår i: Annals of the New York Academy of Sciences. - : Wiley. - 0077-8923 .- 1749-6632. ; 495:1, s. 268-282
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy