SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) ;lar1:(kth)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) > Kungliga Tekniska Högskolan

  • Resultat 1-10 av 108
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zeybel, M., et al. (författare)
  • Multiomics Analysis Reveals the Impact of Microbiota on Host Metabolism in Hepatic Steatosis
  • 2022
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 9:11, s. 2104373-
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex disease involving alterations in multiple biological processes regulated by the interactions between obesity, genetic background, and environmental factors including the microbiome. To decipher hepatic steatosis (HS) pathogenesis by excluding critical confounding factors including genetic variants and diabetes, 56 heterogenous MAFLD patients are characterized by generating multiomics data including oral and gut metagenomics as well as plasma metabolomics and inflammatory proteomics data. The dysbiosis in the oral and gut microbiome is explored and the host–microbiome interactions based on global metabolic and inflammatory processes are revealed. These multiomics data are integrated using the biological network and HS's key features are identified using multiomics data. HS is finally predicted using these key features and findings are validated in a follow-up cohort, where 22 subjects with varying degree of HS are characterized.
  •  
2.
  • Yau, Estelle, et al. (författare)
  • Global Sensitivity Analysis of the Rodgers and Rowland Model for Prediction of Tissue: Plasma Partitioning Coefficients: Assessment of the Key Physiological and Physicochemical Factors That Determine Small-Molecule Tissue Distribution
  • 2020
  • Ingår i: AAPS Journal. - : Springer Nature. - 1550-7416. ; 22:2, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • In physiologically based pharmacokinetic (PBPK) modelling, the large number of input parameters, limited amount of available data and the structural model complexity generally hinder simultaneous estimation of uncertain and/or unknown parameters. These parameters are generally subject to estimation. However, the approaches taken for parameter estimation vary widely. Global sensitivity analyses are proposed as a method to systematically determine the most influential parameters that can be subject to estimation. Herein, a global sensitivity analysis was conducted to identify the key drug and physiological parameters influencing drug disposition in PBPK models and to potentially reduce the PBPK model dimensionality. The impact of these parameters was evaluated on the tissue-to-unbound plasma partition coefficients (Kpus) predicted by the Rodgers and Rowland model using Latin hypercube sampling combined to partial rank correlation coefficients (PRCC). For most drug classes, PRCC showed that LogP and fraction unbound in plasma (fup) were generally the most influential parameters for Kpu predictions. For strong bases, blood:plasma partitioning was one of the most influential parameter. Uncertainty in tissue composition parameters had a large impact on Kpu and Vss predictions for all classes. Among tissue composition parameters, changes in Kpu outputs were especially attributed to changes in tissue acidic phospholipid concentrations and extracellular protein tissue:plasma ratio values. In conclusion, this work demonstrates that for parameter estimation involving PBPK models and dimensionality reduction purposes, less influential parameters might be assigned fixed values depending on the parameter space, while influential parameters could be subject to parameters estimation.
  •  
3.
  • Turanli, Beste, et al. (författare)
  • A Network-Based Cancer Drug Discovery: From Integrated Multi-Omics Approaches to Precision Medicine
  • 2018
  • Ingår i: Current Pharmaceutical Design. - : Bentham Science Publishers Ltd.. - 1873-4286 .- 1381-6128. ; 24:32, s. 3778-3790
  • Forskningsöversikt (refereegranskat)abstract
    • A complex framework of interacting partners including genetic, proteomic, and metabolic networks that cooperate to mediate specific functional phenotypes drives human biological processes. Recent technological and analytical advances in "omic" sciences allow the identification and elucidation of reprogramming biological functions in response to perturbations in cells and tissues. To understand such a complex system, biological networks are generated to reduce the complexity into relatively simple models, and the integration of these molecular networks from different perspectives is implemented for a holistic interpretation of the entire system. Ultimately, network-based methods will effectively facilitate the development and improvement of precision medicine by directing therapies based on the underlying biology of a given patient's disease. The goal of precision medicine is to identify novel therapeutic strategies that can be optimized for each disease type or each patient based on the underlying genetic, environmental, and lifestyle factors. Pharmaco-omics analyses based on an integration of pharmacology and various "omics" data types can be employed to develop effective treatment strategies using particular drugs and doses that are tailored to each individual. In the current review, we first present the core elements of network-based systems biology in the context of pharmaco-omics followed by integration of multi-omics data using various biological networks. Next, we provide an opening into precise medicine and drug targeting based on network approaches. Lastly, we review the current significant efforts as well as the accomplishments and limitations in precise drug targeting with the utility of network-based guided drug discovery methods for effective treatment of breast cancer.
  •  
4.
  • Nordström, Randi, et al. (författare)
  • Membrane interactions of microgels as carriers of antimicrobial peptides
  • 2018
  • Ingår i: Journal of Colloid and Interface Science. - : Academic Press Inc.. - 0021-9797 .- 1095-7103. ; 513, s. 141-150
  • Tidskriftsartikel (refereegranskat)abstract
    • Microgels are interesting as potential delivery systems for antimicrobial peptides. In order to elucidate membrane interactions of such systems, we here investigate effects of microgel charge density on antimicrobial peptide loading and release, as well as consequences of this for membrane interactions and antimicrobial effects, using ellipsometry, circular dichroism spectroscopy, nanoparticle tracking analysis, dynamic light scattering and z-potential measurements. Anionic poly(ethyl acrylate-co-methacrylic acid) microgels were found to incorporate considerable amounts of the cationic antimicrobial peptides LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) and DPK-060 (GKHKNKGKKNGKHNGWKWWW) and to protect incorporated peptides from degradation by infection-related proteases at high microgel charge density. As a result of their net negative z-potential also at high peptide loading, neither empty nor peptide-loaded microgels adsorb at supported bacteria-mimicking membranes. Instead, membrane disruption is mediated almost exclusively by peptide release. Mirroring this, antimicrobial effects against several clinically relevant bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa) were found to be promoted by factors facilitating peptide release, such as decreasing peptide length and decreasing microgel charge density. Microgels were further demonstrated to display low toxicity towards erythrocytes. Taken together, the results demonstrate some interesting opportunities for the use of microgels as delivery systems for antimicrobial peptides, but also highlight several key factors which need to be controlled for their successful use. 
  •  
5.
  • El-Seedi, Hesham R., et al. (författare)
  • Recent insights into the biosynthesis and biological activities of natural xanthones
  • 2010
  • Ingår i: Current Medicinal Chemistry. - : Bentham Science Publishers Ltd.. - 0929-8673 .- 1875-533X. ; 17:9, s. 854-901
  • Forskningsöversikt (refereegranskat)abstract
    • This review focuses on recent advances in our understanding of the complex biosynthetic pathways and diverse biological activities of naturally occurring xanthones. The biosynthesis section covers studies published from 1989 to 2008 on xanthone production in plants and fungi, while the bioactivity review presents tabulated activities of more than 250 xanthones described in studies published from 2001 to 2008, together with structural information and indications of their wide-ranging potential uses as pharmacological tools. A large number of relevant papers have been published on these subjects (128 cited here), illustrating the diversity of the xanthones and their possible uses.
  •  
6.
  • Li, Xiangyu, et al. (författare)
  • Prediction of drug candidates for clear cell renal cell carcinoma using a systems biology-based drug repositioning approach
  • 2022
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 78, s. 103963-
  • Tidskriftsartikel (refereegranskat)abstract
    • SummaryBackground: The response rates of the clinical chemotherapies are still low in clear cell renal cell carcinoma (ccRCC). Computational drug repositioning is a promising strategy to discover new uses for existing drugs to treat patients who cannot get benefits from clinical drugs.Methods: We proposed a systematic approach which included the target prediction based on the co-expression network analysis of transcriptomics profiles of ccRCC patients and drug repositioning for cancer treatment based on the analysis of shRNA-and drug-perturbed signature profiles of human kidney cell line.Findings: First, based on the gene co-expression network analysis, we identified two types of gene modules in ccRCC, which significantly enriched with unfavorable and favorable signatures indicating poor and good survival outcomes of patients, respectively. Then, we selected four genes, BUB1B, RRM2, ASF1B and CCNB2, as the potential drug targets based on the topology analysis of modules. Further, we repurposed three most effective drugs for each target by applying the proposed drug repositioning approach. Finally, we evaluated the effects of repurposed drugs using an in vitro model and observed that these drugs inhibited the protein levels of their corresponding target genes and cell viability.Interpretation: These findings proved the usefulness and efficiency of our approach to improve the drug repositioning researches for cancer treatment and precision medicine.Funding: This study was funded by Knut and Alice Wallenberg Foundation and Bash Biotech Inc., San Diego, CA, USA. 
  •  
7.
  • Valetti, S., et al. (författare)
  • Mesoporous silica particles as a lipophilic drug vehicle investigated by fluorescence lifetime imaging
  • 2017
  • Ingår i: Journal of Materials Chemistry B. - : Royal Society of Chemistry (RSC). - 2050-750X .- 2050-7518. ; 5:17, s. 3201-3211
  • Tidskriftsartikel (refereegranskat)abstract
    • Three types of new label-free fluorescent mesoporous silica micro- and nanoparticles were prepared by controlled thermal decomposition of carboamino groups linked on the surface without compromising the drug loading capacity of the silica particles. Clofazimine, a lipophilic antibiotic drug with excellent in vitro activity against mycobacterium tuberculosis, was encapsulated inside these fluorescent particles to obtain multifunctional drug carriers of interest in the field of theranostics. The morphological features together with the photophysical properties of both powders and aqueous suspensions are described. The photophysical properties seem to be independent of the mesoporosity features but correlate with the residual carboamino functionalization. The particles are endowed with emission in the visible region and have fluorescence lifetimes of up to 9.0 ns that can be easily discriminated from intrinsic biological fluorescence. Furthermore, their fluorescence lifetime offers a promising tool to follow the release of the encapsulated drug which is not possible by means of simple fluorescence intensity. We report here a novel attractive theranostic platform enabling monitoring of drug release in biological environments by means of fluorescence lifetime.
  •  
8.
  • Rosario, Dorines, et al. (författare)
  • Understanding the representative gut microbiota dysbiosis in metformin-treated Type 2 diabetes patients using genome-scale metabolic modeling
  • 2018
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 9:JUN
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysbiosis in the gut microbiome composition may be promoted by therapeutic drugs such as metformin, the world's most prescribed antidiabetic drug. Under metformin treatment, disturbances of the intestinal microbes lead to increased abundance of Escherichia spp., Akkermansia muciniphila, Subdoligranulum variabile and decreased abundance of Intestinibacter bartlettii. This alteration may potentially lead to adverse effects on the host metabolism, with the depletion of butyrate producer genus. However, an increased production of butyrate and propionate was verified in metformin-treated Type 2 diabetes (T2D) patients. The mechanisms underlying these nutritional alterations and their relation with gut microbiota dysbiosis remain unclear. Here, we used Genome-scale Metabolic Models of the representative gut bacteria Escherichia spp., I. bartlettii, A. muciniphila, and S. variabile to elucidate their bacterial metabolism and its effect on intestinal nutrient pool, including macronutrients (e.g., amino acids and short chain fatty acids), minerals and chemical elements (e.g., iron and oxygen). We applied flux balance analysis (FBA) coupled with synthetic lethality analysis interactions to identify combinations of reactions and extracellular nutrients whose absence prevents growth. Our analyses suggest that Escherichia sp. is the bacteria least vulnerable to nutrient availability. We have also examined bacterial contribution to extracellular nutrients including short chain fatty acids, amino acids, and gasses. For instance, Escherichia sp. and S. variabile may contribute to the production of important short chain fatty acids (e.g., acetate and butyrate, respectively) involved in the host physiology under aerobic and anaerobic conditions. We have also identified pathway susceptibility to nutrient availability and reaction changes among the four bacteria using both FBA and flux variability analysis. For instance, lipopolysaccharide synthesis, nucleotide sugar metabolism, and amino acid metabolism are pathways susceptible to changes in Escherichia sp. and A. muciniphila. Our observations highlight important commensal and competing behavior, and their association with cellular metabolism for prevalent gut microbes. The results of our analysis have potential important implications for development of new therapeutic approaches in T2D patients through the development of prebiotics, probiotics, or postbiotics.
  •  
9.
  • Nordquist, Lina, 1977-, et al. (författare)
  • Novel microneedle patches for active insulin delivery are efficient in maintaining glycaemic control : an initial comparison with subcutaneous administration
  • 2007
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 24:7, s. 1381-1388
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Good glycaemic control is essential to minimize the risk for diabetes-induced complications. Also, compliance is likely to be higher if the procedure is simple and painless. This study was designed to validate painless intradermal delivery via a patch-like microneedle array. MATERIALS AND METHODS: Diabetes was induced by an intravenous injection of streptozotocin (50 mg/kg bw) in adult male Sprague Dawley rats. Plasma insulin and blood glucose were measured before, during and after subcutaneous or intradermal (microneedles) infusion of insulin (0.2 IU/h) under Inactin-anaesthesia. RESULTS: Before insulin administration, all animals displayed a pronounced hyperglycaemia (19 +/- 1 mM; 359 mg/dl). Administration of insulin resulted in a reduced plasma glucose independently of administration route (subcutaneous 7.5 +/- 4.2, n = 9, and intradermal 11 +/- 1.8, n = 9 after 240 min), but with less errors of the mean in the intradermal group. In the intradermal group, plasma insulin was increased in all latter measurements (72 +/- 22, 81 +/- 34, and 87 +/- 20 microIU/ml), as compared to the first measurement (26 +/- 13). In the subcutaneous group, plasma insulin was elevated during the last measurement (to 154 +/- 3.5 microIU/ml from 21 +/- 18). CONCLUSION: This study presents a novel possibility of insulin delivery that is controllable and requires minimal training. This treatment strategy could improve compliance, and thus be beneficial for patients' glycaemic control.
  •  
10.
  • Engdahl, Elin, et al. (författare)
  • Bisphenol A Inhibits the Transporter Function of the Blood-Brain Barrier by Directly Interacting with the ABC Transporter Breast Cancer Resistance Protein (BCRP)
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The breast cancer resistance protein (BCRP) is an important efflux transporter in the blood-brain barrier (BBB), protecting the brain from a wide range of substances. In this study, we investigated if BCRP function is affected by bisphenol A (BPA), a high production volume chemical used in common consumer products, as well as by bisphenol F (BPF) and bisphenol S (BPS), which are used to substitute BPA. We employed a transwell-based in vitro cell model of iPSC-derived brain microvascular endothelial cells, where BCRP function was assessed by measuring the intracellular accumulation of its substrate Hoechst 33342. Additionally, we used in silico modelling to predict if the bisphenols could directly interact with BCRP. Our results showed that BPA significantly inhibits the transport function of BCRP. Additionally, BPA was predicted to bind to the cavity that is targeted by known BCRP inhibitors. Taken together, our findings demonstrate that BPA inhibits BCRP function in vitro, probably by direct interaction with the transporter. This effect might contribute to BPA's known impact on neurodevelopment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 108
Typ av publikation
tidskriftsartikel (96)
konferensbidrag (3)
forskningsöversikt (3)
bokkapitel (3)
doktorsavhandling (2)
annan publikation (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (99)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Uhlén, Mathias (8)
Tolmachev, Vladimir (8)
Darwich, Adam S. (6)
Mardinoglu, Adil, 19 ... (6)
Löfblom, John (6)
Mardinoglu, Adil (5)
visa fler...
Orlova, Anna (5)
Roxhed, Niclas (5)
Rasmuson, Åke C. (5)
Turkez, Hasan (5)
Zhang, Cheng (4)
Feiler, Adam (4)
Rasmuson, Åke (4)
Natarajan Arul, Muru ... (3)
Nielsen, Jens B, 196 ... (3)
Zhang, C. (3)
Oroujeni, Maryam, Ph ... (3)
Orlova, Anna, 1960- (3)
Altai, Mohamed (3)
Rutland, Mark W (3)
Valetti, Sabrina (3)
Aarons, Leon (3)
Malmsten, Martin (3)
Engblom, Johan, 1965 ... (3)
Zhang, Jie (2)
Al-Khalili Szigyarto ... (2)
Abbott, D. Wade (2)
Xing, Xiaohui (2)
Rinne, Sara S. (2)
Lindahl, Erik, 1972- (2)
Collins, Joy (2)
Hayward, Alison (2)
Langer, Robert (2)
Traverso, Giovanni (2)
Cleveland, Cody (2)
Buckley, Stephen T. (2)
Benfeitas, Rui (2)
Alderborn, Göran (2)
Borén, Jan, 1963 (2)
Ståhl, Stefan (2)
Abrahmsen, L (2)
Pepin, Xavier (2)
Flanagan, Talia (2)
Moir, Andrea (2)
Tistaert, Christophe (2)
Rostami-Hodjegan, Am ... (2)
Svärd, Michael, Doce ... (2)
Gräslund, Torbjörn (2)
Björklund, Sebastian (2)
Lundborg, Magnus (2)
visa färre...
Lärosäte
Uppsala universitet (23)
Chalmers tekniska högskola (9)
Karolinska Institutet (6)
RISE (5)
Stockholms universitet (4)
visa fler...
Göteborgs universitet (3)
Linköpings universitet (2)
Malmö universitet (2)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (108)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (108)
Naturvetenskap (42)
Teknik (10)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy