SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) ;pers:(Malmsten Martin)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) > Malmsten Martin

  • Resultat 1-10 av 74
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pasupuleti, Mukesh, et al. (författare)
  • Preservation of Antimicrobial Properties of Complement Peptide C3a, from Invertebrates to Humans
  • 2007
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 282:4, s. 2520-2528
  • Tidskriftsartikel (refereegranskat)abstract
    • The human anaphylatoxin peptide C3a, generated during complement activation, exerts antimicrobial effects. Phylogenetic analysis, sequence analyses, and structural modeling studies paired with antimicrobial assays of peptides from known C3a sequences showed that, in particular in vertebrate C3a, crucial structural determinants governing antimicrobial activity have been conserved during the evolution of C3a. Thus, regions of the ancient C3a from Carcinoscorpius rotundicauda as well as corresponding parts of human C3a exhibited helical structures upon binding to bacterial lipopolysaccharide permeabilized liposomes and were antimicrobial against Gram-negative and Gram-positive bacteria. Human C3a and C4a (but not C5a) were antimicrobial, in concert with the separate evolutionary development of the chemotactic C5a. Thus, the results demonstrate that, notwithstanding a significant sequence variation, functional and structural constraints imposed on C3a during evolution have preserved critical properties governing antimicrobial activity.
  •  
2.
  • Sonesson, Andreas, et al. (författare)
  • Antifungal activity of C3a and C3a-derived peptides against Candida
  • 2007
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1768:2, s. 346-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial peptides are generated during activation of the complement system [Nordahl et al. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:16879-16884]. Here we show that the anaphylatoxin C3a exerts antimicrobial effects against the yeast Candida. Fluorescence microscopy and electron microscopy analysis demonstrated that C3a-derived peptides bound to the cell surface of Candida, and induced membrane perturbations and release of extracellular material. Various Candida isolates were found to induce complement degradation, leading to generation of C3a. Arginine residues were found to be critical for the antifungal and membrane breaking activity of a C3a-derived antimicrobial peptide, CNY21 (C3a; Cys57–Arg77). A CNY21 variant with increased positive net charge displayed enhanced antifungal activity. Thus, C3a-derived peptides can be utilized as templates in the development of peptide-based antifungal therapies.
  •  
3.
  • Bysell, Helena, et al. (författare)
  • Effect of hydrophobicity on the interaction between antimicrobial peptides and poly(acrylic acid) microgels
  • 2010
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 114:3, s. 1307-1313
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of peptide hydrophobicity on the interaction between antimicrobial peptides and poly(acrylic, acid) microgels wits studied by end-tagging the kininogen-derived antimicrobial peptide GKHKNKGKKNGKHNGWK (GKH17) and its truncated variant KNKGKKNGKH (KNK10) with oligotryptophan groups of different lengths. Microgel deswelling and reswelling in response to peptide binding and release was studied by micromanipulator-assisted light- and fluorescence microscopy, peptide uptake in microgels was determined from solution depletion measurements, and peptide oligomerization was monitored by fluorescence spectroscopy. Results showed that oligomerizition/aggregation of the hydrophobically end-tagged peptides is either absent or characterized by exposure of the tryptophan residues to the aqueous ambient, the latter suggesting small aggregation numbers. In addition, peptide uptake and affinity to the poly(acrylic acid) microgels increase with the number of trypthophan residues in the hydrophobic end tag, whereas peptide-induced microgel deswelling kinetics did not display this tag-length dependence to the same extent. Instead, long end tags resulted in anomalous shell formation, opposing further peptide-induced network deswelling. Theoretical modeling suggested that the deswelling kinetics in response to peptide binding is largely controlled by stagnant layer diffusion, but also that for peptides with Sufficiently long hydrophobic tags, the shell constitutes an additional diffusion barrier, thus resulting in slower microgel deswelling. In addition, GKH17 and KNK10 peptides lacking the tryptophan end tags were Substantially released on reducing peptide-microgel electrostatic interactions through addition of salt, an effect more pronounced for the shorter KNK10 peptide, whereas the hydrophobically end-tagged peptides remained bound to the microgels also at high ionic strength.
  •  
4.
  • Nordström, Randi, et al. (författare)
  • Membrane interactions of microgels as carriers of antimicrobial peptides
  • 2018
  • Ingår i: Journal of Colloid and Interface Science. - : Academic Press Inc.. - 0021-9797 .- 1095-7103. ; 513, s. 141-150
  • Tidskriftsartikel (refereegranskat)abstract
    • Microgels are interesting as potential delivery systems for antimicrobial peptides. In order to elucidate membrane interactions of such systems, we here investigate effects of microgel charge density on antimicrobial peptide loading and release, as well as consequences of this for membrane interactions and antimicrobial effects, using ellipsometry, circular dichroism spectroscopy, nanoparticle tracking analysis, dynamic light scattering and z-potential measurements. Anionic poly(ethyl acrylate-co-methacrylic acid) microgels were found to incorporate considerable amounts of the cationic antimicrobial peptides LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) and DPK-060 (GKHKNKGKKNGKHNGWKWWW) and to protect incorporated peptides from degradation by infection-related proteases at high microgel charge density. As a result of their net negative z-potential also at high peptide loading, neither empty nor peptide-loaded microgels adsorb at supported bacteria-mimicking membranes. Instead, membrane disruption is mediated almost exclusively by peptide release. Mirroring this, antimicrobial effects against several clinically relevant bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa) were found to be promoted by factors facilitating peptide release, such as decreasing peptide length and decreasing microgel charge density. Microgels were further demonstrated to display low toxicity towards erythrocytes. Taken together, the results demonstrate some interesting opportunities for the use of microgels as delivery systems for antimicrobial peptides, but also highlight several key factors which need to be controlled for their successful use. 
  •  
5.
  • Pasupuleti, Mukesh, et al. (författare)
  • Antimicrobial activity of a C-terminal peptide from human extracellular superoxide dismutase
  • 2009
  • Ingår i: BMC research notes. - : Springer Science and Business Media LLC. - 1756-0500. ; 2, s. 136-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Antimicrobial peptides (AMP) are important effectors of the innate immune system. Although there is increasing evidence that AMPs influence bacteria in a multitude of ways, bacterial wall rupture plays the pivotal role in the bactericidal action of AMPs. Structurally, AMPs share many similarities with endogenous heparin-binding peptides with respect to secondary structure, cationicity, and amphipathicity. FINDINGS: In this study, we show that RQA21 (RQAREHSERKKRRRESECKAA), a cationic and hydrophilic heparin-binding peptide corresponding to the C-terminal region of extracellular superoxide dismutase (SOD), exerts antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Candida albicans. The peptide was also found to induce membrane leakage of negatively charged liposomes. However, its antibacterial effects were abrogated in physiological salt conditions as well as in plasma. CONCLUSION: The results provide further evidence that heparin-binding peptide regions are multifunctional, but also illustrate that cationicity alone is not sufficient for AMP function at physiological conditions. However, our observation, apart from providing a link between heparin-binding peptides and AMPs, raises the hypothesis that proteolytically generated C-terminal SOD-derived peptides could interact with, and possibly counteract bacteria. Further studies are therefore merited to study a possible role of SOD in host defence.
  •  
6.
  • Pasupuleti, Mukesh, et al. (författare)
  • Antimicrobial activity of human prion protein is mediated by its N-terminal region
  • 2009
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 4:10, s. e7358-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Cellular prion-related protein (PrP(c)) is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrP(c), and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypothesize that PrP(c) could exert antimicrobial activity. METHODOLOGY AND PRINCIPAL FINDINGS: Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the "classical" human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking) liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-alpha in vitro. CONCLUSIONS: The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.
  •  
7.
  • Lindholm-Sethson, Britta, et al. (författare)
  • Electrochemical impedance spectroscopy in label-free biosensor applications : multivariate data analysis for an objective interpretation
  • 2010
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 398:6, s. 2341-2349
  • Forskningsöversikt (refereegranskat)abstract
    • Electrochemical impedance spectroscopy plays an important role in biosensor science thanks to the possibility of finding specific information from processes with different kinetics at a chosen electrode potential in one experiment. In this paper we briefly discuss label-free impedimetric biosensors described in the literature. A novel method for neutral interpretation of impedance data is presented that includes complex number chemometrics. Three examples are given based on impedance measurements on synthetic biomembranes, in this case a lipid monolayer deposited on a mercury electrode. The interaction of various compounds with the monomolecular lipid layer is illustrated with the following: (1) different concentrations of magainin (Geladi et al. in Proc. Int. Fed. Med. Biomed. Eng. 9:219-220, 2005); (2) different derivatives of gramicidin A (Lindholm-Sethson et al. in Langmuir 24:5029-5032, 2007), and (3) an antimicrobial peptide (Ringstad et al. in Langmuir 24:208-216, 2008).
  •  
8.
  • Nordström, Randi, 1986-, et al. (författare)
  • Degradable dendritic nanogels as carriers for antimicrobial peptides
  • 2019
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 554, s. 592-602
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, we investigate degradable anionic dendritic nanogels (DNG) as carriers for antimicrobial peptides (AMPs). In such systems, the dendritic part contains carboxylic acid-based anionic binding sites for cationic AMPs, whereas linear poly(ethylene glycol) (PEG) chains form a shell for promotion of biological stealth. In order to clarify factors influencing membrane interactions of such systems, we here address effects of nanogel charge, cross-linking, and degradation on peptide loading/release, as well as consequences of these factors for lipid membrane interactions and antimicrobial effects. The DNGs were found to bind the AMPs LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) and DPK-060 (GKHKNKGKKNGKHNGWKWWW). For the smaller DPK-060 peptide, loading was found to increase with increasing nanogel charge density. For the larger LL-37, on the other hand, peptide loading was largely insensitive to nanogel charge density. In line with this, results on the secondary structure, as well as on the absence of stabilization from proteolytic degradation by the nanogels, show that the larger LL-37 is unable to enter into the interior of the nanogels. While 40–60% nanogel degradation occurred over 10 days, promoted at high ionic strength and lower cross-linking density/higher anionic charge content, peptide release at physiological ionic strength was substantially faster, and membrane destabilization not relying on nanogel degradation. Ellipsometry and liposome leakage experiments showed both free peptide and peptide/DNG complexes to cause membrane destabilization, indicated also by antimicrobial activities being comparable for nanogel-bound and free peptide. Finally, the DNGs were demonstrated to display low toxicity towards erythrocytes even at peptide concentrations of 100 µM.
  •  
9.
  • Nyström, Lina, et al. (författare)
  • Factors affecting peptide interactions with surface-bound microgels
  • 2016
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 17:2, s. 669-678
  • Tidskriftsartikel (refereegranskat)abstract
    • Effects of electrostatics and peptide size on peptide interactions with surface-bound microgels were investigated with ellipsometry, confocal microscopy, and atomic force microscopy (AFM). Results show that binding of cationic poly-l-lysine (pLys) to anionic, covalently immobilized, poly(ethyl acrylate-co-methacrylic acid) microgels increased with increasing peptide net charge and microgel charge density. Furthermore, peptide release was facilitated by decreasing either microgel or peptide charge density. Analogously, increasing ionic strength facilitated peptide release for short peptides. As a result of peptide binding, the surface-bound microgels displayed pronounced deswelling and increased mechanical rigidity, the latter quantified by quantitative nanomechanical mapping. While short pLys was found to penetrate the entire microgel network and to result in almost complete charge neutralization, larger peptides were partially excluded from the microgel network, forming an outer peptide layer on the microgels. As a result of this difference, microgel flattening was more influenced by the lower Mw peptide than the higher. Peptide-induced deswelling was found to be lower for higher Mw pLys, the latter effect not observed for the corresponding microgels in the dispersed state. While the effects of electrostatics on peptide loading and release were similar to those observed for dispersed microgels, there were thus considerable effects of the underlying surface on peptide-induced microgel deswelling, which need to be considered in the design of surface-bound microgels as carriers of peptide loads, for example, in drug delivery or in functionalized biomaterials.
  •  
10.
  • Widenbring, Ronja, 1985- (författare)
  • Microgel Interactions with Peptides and Proteins : Consequence of Peptide and Microgel Properties
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Microgels are lightly cross-linked hydrogel particles in the sub-micrometer to micrometer size range with a capacity to drastically change their volume in response to changes in the external environment. Microgels have an ability to bind and store substances such as biomacromolecular drugs, notably proteins and peptides, and release them upon stimuli, making them potential candidates as drug delivery vehicles and functional biomaterials. This thesis aims at clarifying important factors affecting peptide-microgel interactions. These interactions were studied by micromanipulator-assisted light and fluorescence microscopy focusing on microgel deswelling in response to peptide binding, as well as re-swelling in response to peptide release or enzymatic degradation. To evaluate peptide uptake in microgels, solution depletion measurements were used whereas the peptide secondary structure was investigated by circular dichroism. In addition, the peptide and enzyme distribution within microgels was analyzed with confocal microscopy.Results presented in this thesis demonstrate that peptide incorporation into microgels, as well as peptide-induced microgel deswelling, increases with peptide length and charge density. In addition, results demonstrate that the peptide charge (length) rather than peptide charge density determines microgels deswelling. End-to-end cyclization is shown to not noticeably influence peptide-microgel interactions, suggesting that peptide cyclization can be used in combination with oppositely charged microgel carriers to improve the proteolytic and chemical stability of the peptide compared to the corresponding linear variant. Peptide secondary structure is found to drastically affect peptide incorporation into, and release from, oppositely charged microgels. Furthermore, it is shown that microgel charge density, peptide molecular weight, and enzyme concentration all greatly influence microgel bound peptide degradation. Of importance for applications, protective effects of microgels against proteolytic peptide degradation are observed only at sufficiently high microgel charge densities. Enzyme-mediated microgel degradation is shown to increase with increasing enzyme concentration, while an increased peptide loading in microgels causes a concentration-dependent decrease in microgel degradation.Taken together, results obtained in this work have provided some insight into factors of importance for rational use of microgels as delivery systems for protein or peptide drugs, but also in a host of other biomedical applications using weakly cross-linked polymer systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 74
Typ av publikation
tidskriftsartikel (57)
forskningsöversikt (7)
doktorsavhandling (6)
annan publikation (2)
bokkapitel (2)
Typ av innehåll
refereegranskat (64)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Schmidtchen, Artur (28)
Ringstad, Lovisa (12)
Mörgelin, Matthias (9)
Davoudi, Mina (7)
Hansson, Per (6)
visa fler...
Bysell, Helena (6)
Nordström, Randi (6)
Strömstedt, Adam A. (4)
Rydengård, Victoria (4)
Hansson, Per, Profes ... (3)
Papareddy, Praveen (3)
Kasetty, Gopinath (2)
Lindholm-Sethson, Br ... (2)
Malkoch, Michael, 19 ... (2)
Heinz, Andrea (2)
Andrén, Oliver C. J. (2)
Strömstedt, Adam A., ... (1)
Walse, Björn (1)
Nylander, Tommy (1)
Johansson, Christian (1)
Foged, C (1)
Alvarez-Asencio, Rub ... (1)
Edwards, Katarina (1)
Rutland, Mark W (1)
Sørensen, Ole E. (1)
Sonesson, Andreas (1)
Andersson, Per (1)
Göransson, Ulf, 1970 ... (1)
Haglöf, Jakob (1)
Li, Li (1)
Surewicz, Witold K. (1)
Geladi, Paul (1)
Rodriguez, M (1)
Egesten, Arne (1)
Nordenfelt, Pontus (1)
Collin, Mattias (1)
Albiger, Barbara (1)
Sjövall, Peter (1)
Ringstad, L (1)
Lundqvist, Katarina (1)
Simonsen, A (1)
Nielsen, M. (1)
Roupé, Markus (1)
Alenfall, Jan (1)
Bengtsson, E (1)
Campbell, Richard A. (1)
Wessman, Per (1)
Fredrikson, G. N. (1)
Nyström, Josefina (1)
visa färre...
Lärosäte
Uppsala universitet (66)
Lunds universitet (40)
Kungliga Tekniska Högskolan (3)
Umeå universitet (2)
RISE (2)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (74)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (74)
Naturvetenskap (17)
Teknik (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy