SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) ;pers:(Oliw Ernst H.)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Pharmaceutical Sciences) > Oliw Ernst H.

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jernerén, Fredrik, et al. (författare)
  • Reaction mechanism of 5,8-linoleate diol synthase, 10R-dioxygenase, and 8,11-hydroperoxide isomerase of Aspergillus clavatus
  • 2010
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002 .- 1878-2434. ; 1801:4, s. 503-507
  • Tidskriftsartikel (refereegranskat)abstract
    • Aspergilli express fusion proteins of an animal haem peroxidase domain with fatty acid dioxygenase (DOX) activity ( approximately 600 amino acids) and a functional or non-functional hydroperoxide isomerase/cytochrome P450 domain ( approximately 500 amino acids with EXXR and GPHXCLG motifs). 5,8-Linoleate diol synthases (LDS; ppoA) and 10R-DOX (ppoC) of Aspergillusnidulans and A. fumigatus belong to this group. Our objective was to determine the oxylipins formed from linoleic acid by A. clavatus and their mechanism of biosynthesis. A. clavatus oxidized linoleic acid to (8R)-hydroperoxylinoleic acid (8R-HPODE), (10R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE), and to (5S,8R)-dihydroxy- and (8R,11S)-dihydroxylinoleic acids (DiHODE) as major products. This occurred by abstraction of the pro-S hydrogen at C-8 and antarafacial dioxygenation at C-8 or at C-10 with double bond migration. 8R-HPODE was then isomerized to 5S,8R-DiHODE and to 8R,11S-DiHODE by abstraction of the pro-S hydrogens at C-5 and C-11 of 8R-HPODE, respectively, followed by suprafacial oxygenation. The genome of A. clavatus codes for two enzymes, which can be aligned with >65% amino acid identity to 10R-DOX and 5,8-LDS, respectively. The 5,8-LDS homologue likely forms and isomerizes 8R-HPODE to 5S,8R-DiHODE. A third gene (ppoB) codes for a protein which carries a serine residue at the cysteine position of the P450 motif. This Cys to Ser replacement is known to abolish P450 2B4 catalysis and the hydroperoxide isomerase activity of 5,8-LDS, suggesting that ppoB of A. clavatus may not be involved in the biosynthesis of 8R,11S-DiHODE.
  •  
2.
  • Stark, Katarina, et al. (författare)
  • On the mechanism of biosynthesis of 19-hydroxyprostaglandins of human seminal fluid and expresssion of cyclooxygenase-2, PGH 19-hydroxylas (CYP4F8) and microsomal PGE synthase-1 in seminal vesicles and vas deferens
  • 2005
  • Ingår i: Prostaglandins & other lipid mediators. - : Elsevier BV. - 1098-8823 .- 2212-196X. ; 75:1-4, s. 47-64
  • Tidskriftsartikel (refereegranskat)abstract
    • The predominating prostaglandins of human seminal fluid are 19R-hydroxyprostaglandins E1 and E2, conceivably formed sequentially by prostaglandin H (PGH) synthase-2, PGH 19-hydroxylase (CYP4F8), and microsomal PGE synthase-1 of seminal vesicles. Our aim was to study this enzyme system. Quantification by real-time PCR suggested that the transcripts of PGH synthase-2, CYP4F8, and microsomal PGE synthase-1 were abundant and correlated in seminal vesicles of seven patients (p < 0.05). The three enzymes were detected in seminal vesicles by Western blot analysis, and immunohistological analysis confirmed the localization to the epithelia of seminal vesicles and distal vas deferens. Immunofluorescence analysis showed co-localization of the three enzymes in epithelial cells of seminal vesicles and vas deferens. 19-Hydroxy-PGE compounds were detected by mass spectrometry in the mucosa of distal vas deferens. Recombinant CYP4F8 catalyzes n-2 hydroxylation of PGH1 and PGH2 and n-3 hydroxylation of arachidonic acid. Arachidonic acid was oxidized to 18-hydroxyarachidonic acid and to PGE2 and by microsomes of seminal vesicles in the presence of NADPH and GSH, and to relatively small amounts of 19-hydroxy-PGE2. We conclude that PGH synthase-2, CYP4F8, and PGE synthase-1 likely forms 19-hydroxy-PGE compounds in seminal vesicles and vas deferens, but the catalytic properties of CYP4F8 suggest additional biological functions. Recombinant CYP4F8 was also found to catalyze n-2 hydroxylation of PGI2 and carbaprostacyclin (Km to approximately 40 microM), and n-2 and n-3 hydroxylation of carbocyclic TXA2.
  •  
3.
  • Cristea, Mirela, 1976- (författare)
  • Expression of Manganese Lipoxygenase and Site-Directed Mutagenesis of Catalytically Important Amino Acids : Studies on Fatty Acid Dioxygenases
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Polyunsaturated fatty acids can be bioactivated by two families of dioxygenases, which either contain non-heme iron (lipoxygenases) or heme (cyclooxygenases, linoleate diol synthases and α-dioxygenases).Lipoxygenases and their products play important roles in the pathophysiology of plants and fungi. The only known lipoxygenase with catalytic manganese (Mn-lipoxygenase) is secreted by a devastating root pathogen of wheat, the Take-all fungus Gaeumannomyces graminis. Its mycelia also contains linoleate diol synthase (LDS), which can oxidize linoleic acid to sporulation hormones.Mn-lipoxygenase belongs to the lipoxygenase gene family. Recombinant Mn-lipoxygenase was successfully expressed in the yeast Pichia pastoris with an expression level of 30 mg/L in fermentor culture. The tentative metal ligands of Mn-lipoxygenase were studied by site-directed mutagenesis. The results show that four residues His-274, His-278, His-462 and the C-terminal Val-602 likely coordinate manganese, as predicted by sequence alignments with Fe lipoxygenases.Mn-lipoxygenase (~100 kDa) contains an Asp-Pro peptide bond in the N-terminal region, which appears to hydrolyze during storage and in the acidic media during Pichia expression to an active enzyme of smaller size, mini-Mn-lipoxygenase (~70 kDa). The active form of Mn-lipoxygenase can oxygenate fatty acids of variable chain length, suggesting that the fatty acids enter the catalytic site with the ω-end (“tail first”).Mn-lipoxygenase is an R-lipoxygenase with a conserved Gly316 residue known as a determinant of stereospecificity in other R/S lipoxygenases. The Gly316Ala mutant showed an increased hydroperoxide isomerase activity and transformed 18:3n-3 and 17:3n-3 to epoxyalcohols.The genome of the rice blast fungus, Magnaporthe grisea, contains putative genes of lipoxygenases and LDS. Mycelia of M. grisea were found to express LDS activity. This enzyme was cloned and sequenced and showed 65% amino acid identity with LDS from G.graminis. Take-all and the rice blast fungi represent a constant threat to staple foods worldwide. Mn-lipoxygenase and LDS might provide new means to combat these pathogens.
  •  
4.
  • Nilsson, Tomas, 1977-, et al. (författare)
  • Liquid chromatography/tandem mass spectrometric analysis of 7,10-dihydroxyoctadecenoic acid, its isotopomers, and other 7,10-dihydroxy fatty acids formed by Pseudomonas aeruginosa 42A2
  • 2010
  • Ingår i: Rapid Communications in Mass Spectrometry. - : Wiley. - 0951-4198 .- 1097-0231. ; 24:6, s. 777-783
  • Tidskriftsartikel (refereegranskat)abstract
    • Pseudomonas aeruginosa is an opportunistic pathogen, which oxidizes oleic acid to 7(S),10(S)-dihydroxy-8(E)-octadecenoic acid (7,10-(OH)(2)-18:1) of biological and industrial interest. Electrospray tandem mass spectrometric (MS/MS) analysis of hydroxylated fatty acids usually generates characteristic fragments containing the carboxylate anion and formed by alpha-cleavage at the oxidized carbon. These fragments indicate the positions of the hydroxyl group. In contrast, liquid chromatography (LC)/MS/MS analysis of 7,10-(OH)(2)-18:1 yielded a series of other ions with structural information. To study the fragmentation mechanism, we prepared (2)H- and (18)O-labeled isotopomers. We also performed MS(3) analysis of the major ions, and for comparison we generated the corresponding 7,10-dihydroxy metabolites of 16:1n-7, 18:2n-6, and 20:1n-11 with a protein extract of P. aeruginosa. The MS/MS spectra of 7,10-(OH)(2)-18:1 and its isotopomers, 7,10-(OH)(2)-16:1, and 7,10-(OH)(2)-20:1, contained a series of prominent fragments that all hold the omega end. The 8,9-double bond was not essential for this fragmentation, as 7,10-(OH)(2)-18:0, and its isotopomers, formed essentially the same fragments in the lower mass range. In contrast, 7,10-dihydroxy-8(E),12(Z)-octadecadienoic acid (7,10-(OH)(2)-18:2) fragmented by alpha-cleavage at the oxidized carbons with formation of carboxylate anions. Our results demonstrate that C(16)-C(20) fatty acids with a 7,10-dihydroxy-8(E) functionality undergo charge-driven fragmentation after charge migration to the omega-end, whereas the main ions of 7,10-(HO)(2)-18:2 retain charge at the carboxyl group.
  •  
5.
  • Stark, Katarina, 1975- (författare)
  • Catalytic Properties and Tissue Distribution of Cytochrome P450 4F8 and 4F12 : Expression of CYP4F8 in Eye Tissues and Psoriatic Lesions
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The human cytochrome P450 (CYP) family of monooxygenases is important for metabolism of drugs and endogenous compounds, e.g., vitamin A and D, cholesterol, steroids, fatty acids, and eicosanoids. This thesis describes the tissue distribution, catalytic properties, and possible function of CYP4F8 and CYP4F12. To this respect, methods for immunohistological analysis, and real-time PCR for analysis of their transcripts, were developed.CYP4F8 was originally cloned from human seminal vesicles and proposed to catalyze 19-hydroxylation of prostaglandin H2 (PGH2). This notion could now be supported, as cyclooxygenase-2, CYP4F8, and microsomal prostaglandin E synthase-1 were found to be co-localized in the epithelial linings of seminal vesicles. The three enzymes were also co-localized in the suprabasal layers of epidermis, suggesting a similar function of CYP4F8 in skin. Real-time PCR showed that CYP4F8 mRNA was more than 10-fold increased in psoriatic lesions compared to non-lesional skin. CYP4F8 immunoreactivity was also found in kidney cortex, transitional epithelium, corneal epithelium, and retina. Although transcripts of all three enzymes were detectable in retina, no co-localization was found. Pro inflammatory stimuli were found to increase CYP4F8 mRNA expression in cultured epidermal and corneal keratinocytes. In these tissues CYP4F8 might oxidize fatty acids or other eicosanoids than PGH2.CYP4F12 was originally cloned from the liver and small intestine, and found to oxidize arachidonic acid and two anti-histamines. Immunohistological studies showed that CYP4F12 immunoreactivity was present mainly in the gastrointestinal tract, e.g., stomach, ilium, and colon, but also in placenta. Although CYP4F8 and CYP4F12 have catalytic properties in common, there are important differences. CYP4F12 does not oxidize PGH2, certain eicosanoids, and fatty acids. The prominent expression in the gut suggests that CYP4F12 might be involved in oxidation of drugs.
  •  
6.
  • Cristea, Mirela, et al. (författare)
  • Expression of manganese lipoxygenase in Pichia pastoris and site-directed mutagenesis of putative manganese ligands
  • 2005
  • Ingår i: Archives of Biochemistry and Biophysics. - : Elsevier BV. - 0003-9861 .- 1096-0384. ; 434:1, s. 201-211
  • Tidskriftsartikel (refereegranskat)abstract
    • Manganese lipoxygenase is secreted by the fungus Gaeumannomyces graminis. We expressed the enzyme in Pichia pastoris, which secreted approximately 30 mg Mn-lipoxygenase/L culture medium in fermentor. The recombinant lipoxygenase was N- and O-glycosylated (80-100 kDa), contained approximately 1 mol Mn/mol protein, and had similar kinetic properties (K(m) approximately 7.1 microM alpha-linolenic acid and V(max) 18 nmol/min/microg) as the native Mn-lipoxygenase. Mn-lipoxygenase could be quantitatively converted, presumably by secreted Pichia proteases, to a smaller protein (approximately 67 kDa) with retention of lipoxygenase activity (K(m) approximately 6.4 microM alpha-linolenic acid and V(max) approximately 12 nmol/min/microg). Putative manganese ligands were investigated by site-directed mutagenesis. The iron ligands of soybean lipoxygenase-1 are two His residues in the sequence HWLNTH, one His residue and a distant Asn residue in the sequence HAAVNFGQ, and the C-terminal Ile residue. The homologous sequences of Mn-lipoxygenase are H274VLFH278 and H462HVMN466QGS, respectively, and the C-terminal amino acid is Val-602. The His274Gln, His278Glu, His462Glu, and the Val-602 deletion mutants of Mn-lipoxygenase were inactive, and had lost >95% of the manganese content. His-463, Asn-466, and Gln-467 did not appear to be critical for Mn-lipoxygenase activity, as His463Gln, Asn466Gln, Asn466Leu, and Gln467Asn mutants metabolized alpha-linolenic acid to 11- and 13-hydroperoxylinolenic acids. We conclude that His-274, His-278, His-462, and Val-602 likely coordinate manganese.
  •  
7.
  • Cristea, Mirela, et al. (författare)
  • On the singular, dual, and multiple positional specificity of manganese lipoxygenase and its G316A mutant
  • 2007
  • Ingår i: Journal of Lipid Research. - 0022-2275 .- 1539-7262. ; 48:4, s. 890-903
  • Tidskriftsartikel (refereegranskat)abstract
    • Manganese lipoxygenase (Mn-LO) oxygenates 18:3n-3 and 18:2n-6 to bis-allylic 11S-hydroperoxy fatty acids, which are converted to 13R-hydroperoxy fatty acids. Other unsaturated C16-C22 fatty acids, except 17:3n-3, are poor substrates, possibly due to ineffective enzyme activation (MnIIMnIII) by produced hydroperoxides. Our aim was to determine whether unsaturated C16-C22 fatty acids were oxidized by MnIII-LO. MnIII-LO oxidized C16, C19, C20, and C22 n-3 and n-6 fatty acids. The carbon chain length influenced the position of hydrogen abstraction (n-8, n-5) and oxygen insertion at the terminal or the penultimate 1Z,4Z-pentadienes. Dilinoleoyl¬glycero¬phosphatidyl¬¬choline was oxidized by Mn-LO in agreement with a “tail first” model. 16:3n-3 was oxidized at the bis-allylic n-5 carbon and at positions n-3, n-7, and n-6. Long fatty acids, 19:3n-3, 20:3n-3, 20:4n-6, 22:5n-3, and 22:5n-6, were mainly oxidized at the n-6 and the bis-allylic n-8 positions (in ratios of ~3:2). The bis-allylic hydroperoxides accumulated with one exception, 13-hydroperoxyeicosatetraenoic acid (13-HPETE). MnIII-LO oxidized 20:4n-6 to 15R-HPETE (~60%) and 13-HPETE (~37%) and converted 13-HPETE to 15R-HPETE. MnIII-LO G316A mainly oxygenated 16:3n-3 at positions n-7 and n-6, 19:3n-3 at n-10, n-8, and n-6, 20:3n-3 at n-10 and n-8. We conclude that Mn-LO likely binds fatty acids “tail first” and oxygenates many C16, C18, C20 and C22 fatty acids to significant amounts of bis-allylic hydroperoxides.
  •  
8.
  • Garscha, Ulrike, et al. (författare)
  • Critical amino acids for the 8(R)-dioxygenase activity of linoleate diol synthase. A comparison with cyclooxygenases
  • 2008
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793 .- 1873-3468. ; 582:23-24, s. 3547-51
  • Tidskriftsartikel (refereegranskat)abstract
    • 7,8-Linoleate diol synthase (7,8-LDS) of the take-all fungus and cyclooxygenases can be aligned with approximately 24% amino acid identity and both form a tyrosyl radical during catalysis. 7,8-LDS was expressed in insect cells with native 8R-dioxygenase and hydroperoxide isomerase activities. We studied conserved residues of 7,8-LDS, which participate in cyclooxygenases for heme binding (His residues), hydrogen abstraction (Tyr), positioning (Tyr, Trp), and ionic binding of substrates (Arg). Site-directed mutagenesis abolished 8R-dioxygenase activities with exception of the putative distal histidine (His203Gln) and a tyrosine residue important for hydrogen bonding and substrate positioning (Tyr329Phe). The results demonstrate structural similarities between 7,8-LDS and cyclooxygenases.
  •  
9.
  • Garscha, Ulrike, et al. (författare)
  • Identification of dioxygenases required for Aspergillus development : Studies of products, stereochemistry, and the reaction mechanism
  • 2007
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 282:48, s. 34707-34718
  • Tidskriftsartikel (refereegranskat)abstract
    • Aspergillus sp. contain ppoA, ppoB, and ppoC genes, which code for fatty acid oxygenases with homology to fungal linoleate 7,8-diol synthases (7,8-LDS) and cyclooxygenases. Our objective was to identify these enzymes, as ppo gene replacements show critical developmental aberrancies in sporulation and pathogenicity in the human pathogen Aspergillus fumigatus and the genetic model Aspergillus nidulans. The PpoAs of A. fumigatus and A. nidulans were identified as (8R)-dioxygenases with hydroperoxide isomerase activity, designated 5,8-LDS. 5,8-LDS transformed 18:2n-6 to (8R)-hydroperoxyoctadecadienoic acid ((8R)-HPODE) and (5S,8R)-dihydroxy-9Z,12Z-octadecadienoic acid ((5S,8R)-DiHODE). We also detected 8,11-LDS in A. fumigatus and (10R)-dioxygenases in both Aspergilli. The diol synthases oxidized [(8R)-2H]18:2n-6 to (8R)-HPODE with retention of the deuterium label, suggesting antarafacial hydrogen abstraction and insertion of molecular oxygen. Experiments with stereospecifically deuterated 18:2n-6 showed that (8R)-HPODE was isomerized by 5,8- and 8,11-LDS to (5S,8R)-DiHODE and to (8R,11S)-dihydroxy-9Z,12Z-octadecadienoic acid, respectively, by suprafacial hydrogen abstraction and oxygen insertion at C-5 and C-11. PpoCs were identified as (10R)-dioxygenases, which catalyzed abstraction of the pro-S hydrogen at C-8 of 18:2n-6, double bond migration, and antafacial insertion of molecular oxygen with formation of (10R)-hydroxy-8E,12Z- hydroperoxyoctadecadienoic acid ((10R)-HPODE). Deletion of ppoA led to prominent reduction of (8R)-H(P)ODE and complete loss of (5S,8R)-DiHODE biosynthesis, whereas biosynthesis of (10R)-HPODE was unaffected. Deletion of ppoC caused biosynthesis of traces of racemic 10-HODE but did not affect the biosynthesis of other oxylipins. We conclude that ppoA of Aspergillus sp. may code for 5,8-LDS with catalytic similarities to 7,8-LDS and ppoC for linoleate (10R)-dioxygenases. Identification of these oxygenases and their products will provide tools for analyzing the biological impact of oxylipin biosynthesis in Aspergilli.
  •  
10.
  • Garscha, Ulrike, et al. (författare)
  • Leucine/Valine Residues Direct Oxygenation of Linoleic Acid by (10R)- and (8R)-Dioxygenases : Expression and site-directed mutagenesis of (10R)- dioxygenase with epoxyalcohol synthase activity
  • 2009
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 284:20, s. 13755-13765
  • Tidskriftsartikel (refereegranskat)abstract
    • Linoleate (10R)-dioxygenase (10R-DOX) of Aspergillus fumigatus was cloned and expressed in insect cells. Recombinant 10R-DOX oxidized 18:2n-6 to (10R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE; approximately 90%), (8R)-hydroperoxylinoleic acid (8R-HPODE; approximately 10%), and small amounts of 12S(13R)-epoxy-(10R)-hydroxy-(8E)-octadecenoic acid. We investigated the oxygenation of 18:2n-6 at C-10 and C-8 by site-directed mutagenesis of 10R-DOX and 7,8-linoleate diol synthase (7,8-LDS), which forms approximately 98% 8R-HPODE and approximately 2% 10R-HPODE. The 10R-DOX and 7,8-LDS sequences differ in homologous positions of the presumed dioxygenation sites (Leu-384/Val-330 and Val-388/Leu-334, respectively) and at the distal site of the heme (Leu-306/Val-256). Leu-384/Val-330 influenced oxygenation, as L384V and L384A of 10R-DOX elevated the biosynthesis of 8-HPODE to 22 and 54%, respectively, as measured by liquid chromatography-tandem mass spectrometry analysis. The stereospecificity was also decreased, as L384A formed the R and S isomers of 10-HPODE and 8-HPODE in a 3:2 ratio. Residues in this position also influenced oxygenation by 7,8-LDS, as its V330L mutant augmented the formation of 10R-HPODE 3-fold. Replacement of Val-388 in 10R-DOX with leucine and phenylalanine increased the formation of 8R-HPODE to 16 and 36%, respectively, whereas L334V of 7,8-LDS was inactive. Mutation of Leu-306 with valine or alanine had little influence on the epoxyalcohol synthase activity. Our results suggest that Leu-384 and Val-388 of 10R-DOX control oxygenation of 18:2n-6 at C-10 and C-8, respectively. The two homologous positions of prostaglandin H synthase-1, Val-349 and Ser-353, are also critical for the position and stereospecificity of the cyclooxygenase reaction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy