SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Physiology) ;pers:(Mekjavic Igor B.)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Physiology) > Mekjavic Igor B.

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Debevec, Tadej, et al. (författare)
  • Whole body and regional body composition changes following 10-day hypoxic confinement and unloading-inactivity
  • 2014
  • Ingår i: Applied Physiology, Nutrition and Metabolism. - : Canadian Science Publishing. - 1715-5312 .- 1715-5320. ; 39:3, s. 386-395
  • Tidskriftsartikel (refereegranskat)abstract
    • Future planetary habitats will expose inhabitants to both reduced gravity and hypoxia. This study investigated the effects of short-term unloading and normobaric hypoxia on whole body and regional body composition (BC). Eleven healthy, recreationally active, male participants with a mean (SD) age of 24 (2) years and body mass index of 22.4 (3.2) kg.m(-2) completed the following 3 10-day campaigns in a randomised, cross-over designed protocol: (i) hypoxic ambulatory confinement (HAMB; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), (ii) hypoxic bed rest (HBR; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), and (iii) normoxic bed rest (NBR; FIO2 = 0.209; PIO2 = 133.5 (0.7) mmHg). Nutritional requirements were individually precalculated and the actual intake was monitored throughout the study protocol. Body mass, whole body, and regional BC were assessed before and after the campaigns using dual-energy X-ray absorptiometry. The calculated daily targeted energy intake values were 2071 (170) kcal for HBR and NBR and 2417 (200) kcal for HAMB. In both HBR and NBR campaigns the actual energy intake was within the targeted level, whereas in the HAMB the intake was lower than targeted (-8%, p < 0.05). Body mass significantly decreased in all 3 campaigns (-2.1%, -2.8%, and -2.0% for HAMB, HBR, and NBR, respectively; p < 0.05), secondary to a significant decrease in lean mass (-3.8%, -3.8%, -4.3% for HAMB, HBR, and NBR, respectively; p < 0.05) along with a slight, albeit not significant, increase in fat mass. The same trend was observed in the regional BC regardless of the region and the campaign. These results demonstrate that, hypoxia per se, does not seem to alter whole body and regional BC during short-term bed rest.
  •  
2.
  • Keramidas, Michail E., et al. (författare)
  • Muscle and cerebral oxygenation during exercise performance after short-term respiratory work
  • 2011
  • Ingår i: Respiratory Physiology & Neurobiology. - : Elsevier BV. - 1569-9048 .- 1878-1519. ; 175:2, s. 247-254
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of the study was to investigate the effect of 30-min voluntary hyperpnoea on cerebral, respiratory and leg muscle balance between 02 delivery and utilization during a subsequent constant-power test. Eight males performed a VO2max test, and two exercise tests at 85% of peak power output: (a) a control constant-power test (CPT), and (b) a constant-power test after a respiratory maneuver (CPTRM). Oxygenated (Delta[O(2)Hb]), deoxygenated (Delta[HHb]) and total (Delta[tHb]) hemoglobin in cerebral, intercostal and vastus lateralis were monitored with near-infrared spectroscopy. The performance time dropped similar to 15% in CPTRM (6:55 +/- 2:52 min) compared to CPT (8:03 +/- 2:33 min), but the difference was not statistically significant. The vastus lateral's and intercostal Delta[tHb] and Delta[HHb] were lower in CPTRM than in CPT (P <= 0.05). There were no differences in cerebral oxygenation between the trials. Thus, respiratory work prior to an exercise test influences the oxygenation during exercise in the leg and respiratory muscles, but not in the frontal cortex. (C) 2010 Elsevier B.V. All rights reserved.
  •  
3.
  • Salvadego, Desy, et al. (författare)
  • LunHab: Separate and combined effects of a 10-d exposure to hypoxia and inactivity on oxidative function in vivo and mitochondrial respiration ex vivo in humans.
  • 2016
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 121:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An integrative evaluation of oxidative metabolism was carried out in 9 healthy young men (age, 24.1 +/- 1.7 yr mean +/- SD) before (CTRL) and after a 10-day horizontal bed rest carried out in normoxia (N-BR) or hypoxia (H-BR, FIO2 = 0.147). H-BR was designed to simulate planetary habitats. Pulmonary O-2 uptake ((V) over dotO(2)) and vastus lateralis fractional O-2 extraction (changes in deoxygenated hemoglobin + myoglobin concentration, Delta[deoxy(Hb + Mb)] evaluated using near-infrared spectroscopy) were evaluated in normoxia and during an incremental cycle ergometer (CE) and one-leg knee extension (KE) exercise (aimed at reducing cardiovascular constraints to oxidative function). Mitochondrial respiration was evaluated ex vivo by high-resolution respirometry in permeabilized vastus lateralis fibers. During CE (V) over dotO(2peak) and Delta[deoxy(Hb + Mb)] peak were lower (P < 0.05) after both N-BR and H-BR than during CTRL; during KE the variables were lower after N-BR but not after H-BR. During CE the overshoot of Delta[deoxy(Hb + Mb)] during constant work rate exercise was greater in N-BR and H-BR than CTRL, whereas during KE a significant difference vs. CTRL was observed only after N-BR. Maximal mitochondrial respiration determined ex vivo was not affected by either intervention. In N-BR, a significant impairment of oxidative metabolism occurred downstream of central cardiovascular O-2 delivery and upstream of mitochondrial function, possibly at the level of the intramuscular matching between O-2 supply and utilization and peripheral O-2 diffusion. Superposition of hypoxia on bed rest did not aggravate, and partially reversed, the impairment of muscle oxidative function in vivo induced by bed rest. The effects of longer exposures will have to be determined.
  •  
4.
  • Yogev, Daniel, et al. (författare)
  • Effect of 21 days of horizontal bed rest on behavioural thermoregulation
  • 2010
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 108:2, s. 281-288
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study investigated the effect of 21 days of horizontal bed rest on cutaneous cold and warm sensitivity, and on behavioural temperature regulation. Healthy male subjects (N = 10) were accommodated in a hospital ward for the duration of the study and were under 24-h medical care. All activities (eating, drinking, hygiene, etc.) were conducted in the horizontal position. On the 1st and 22nd day of bed rest, cutaneous temperature sensitivity was tested by applying cold and warm stimuli of different magnitudes to the volar region of the forearm via a Peltier element thermode. Behavioural thermoregulation was assessed by having the subjects regulate the temperature of the water within a water-perfused suit (T (wps)) they were wearing. A control unit established a sinusoidal change in T (wps), such that it varied from 27 to 42A degrees C. The subjects could alter the direction of the change of T (wps), when they perceived it as thermally uncomfortable. The magnitude of the oscillations towards the end of the trial was assumed to represent the upper and lower boundaries of the thermal comfort zone. The cutaneous threshold for detecting cold stimulus decreased (P < 0.05) from 1.6 (1.0)A degrees C on day 1 to 1.0 (0.3)A degrees C on day 22. No effect was observed on the ability to detect warm stimuli or on the regulated T (wps). We conclude that although cold sensitivity increased after bed rest, it was not of sufficient magnitude to cause any alteration in behavioural thermoregulatory responses.
  •  
5.
  • Rittweger, Joern, et al. (författare)
  • On the combined effects of normobaric hypoxia and bed rest upon bone and mineral metabolism : Results from the PlanHab study
  • 2016
  • Ingår i: Bone. - : Elsevier. - 8756-3282 .- 1873-2763. ; 91, s. 130-138
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone losses are common as a consequence of unloading and also in patients with chronic obstructive pulmonary disease (COPD). Although hypoxia has been implicated as an important factor to drive bone loss, its interaction with unloading remains unresolved. The objective therefore was to assess whether human bone loss caused by unloading could be aggravated by chronic hypoxia. In a cross-over designed study, 14 healthy young men underwent 21-day interventions of bed rest in normoxia (NBR), bed rest in hypoxia (HBR), and hypoxic ambulatory confinement (HAmb). Hypoxic conditions were equivalent to 4000 m altitude. Bone metabolism (NTX, P1NP, sclerostin, DKK1) and phospho-calcic homeostasis (calcium and phosphate serum levels and urinary excretion, PTH) were assessed from regular blood samples and 24-hour urine collections, and tibia and femur bone mineral content was assessed by peripheral quantitative computed tomography (pQCT). Urinary NTX excretion increased (P<0.001) to a similar extent in NBR and HBR (P = 0.69) and P1NP serum levels decreased (P = 0.0035) with likewise no difference between NBR and HBR (P = 0.88). Serum total calcium was increased during bed rest by 0.059 (day D05, SE 0.05 mM) to 0.091 mM (day D21, P < 0.001), with no additional effect by hypoxia during bed rest (P = 0.199). HAmb led, at least temporally, to increased total serum calcium, to reduced serum phosphate, and to reduced phosphate and calcium excretion. In conclusion, hypoxia did not aggravate bed rest-induced bone resorption, but led to changes in phospho-calcic homeostasis likely caused by hyperventilation. Whether hyperventilation could have mitigated the effects of hypoxia in this study remains to be established.
  •  
6.
  • Berg, Hans E., et al. (författare)
  • Hip, thigh and calf muscle atrophy and bone loss after 5-week bedrest inactivity
  • 2007
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 99:3, s. 283-289
  • Tidskriftsartikel (refereegranskat)abstract
    • Unloaded inactivity induces atrophy and functional deconditioning of skeletal muscle, especially in the lower extremities. Information is scarce, however, regarding the effect of unloaded inactivity on muscle size and function about the hip. Regional bone loss has been demonstrated in hips and knees of elderly orthopaedic patients, as quantified by computerized tomography (CT). This method remains to be validated in healthy individuals rendered inactive, including real or simulated weightlessness. In this study, ten healthy males were subjected to 5 weeks of experimental bedrest and five matched individuals served as ambulatory controls. Maximum voluntary isometric hip and knee extension force were measured using the strain gauge technique. Cross-sectional area (CSA) of hip, thigh and calf muscles, and radiological density (RD) of the proximal tibial bone were measured using CT. Bedrest decreased (P < 0.05) average (SD) muscle strength by 20 (8)% in knee extension, and by 22 (12)% in hip extension. Bedrest induced atrophy (P < 0.05) of extensor muscles in the gluteal region, thigh and calf, ranging from 2 to 12%. Atrophy was more pronounced in the knee extensors [9 (4)%] and ankle plantar flexors [12 (3)%] than in the gluteal extensor muscles [2 (2)%]. Bone density of the proximal tibia decreased (P < 0.05) by 3 (2)% during bedrest. Control subjects did not show any temporal changes in muscle or bone indices (P > 0.05), when examined at similar time intervals. The present findings of a substantial loss in hip extensor strength and a smaller, yet significant atrophy of these muscles, demonstrate that hip muscle deconditioning accompanies losses in thigh and calf muscle mass after bedrest. This suggests that comprehensive quantitative studies on impaired locomotor function after inactivity should include all joints of the lower extremity. Our results also demonstrate that a decreased RD, indicating bone mineral loss, can be shown already after 5 weeks of unloaded bedrest, using a standard CT technique.
  •  
7.
  • Debevec, Tadej, et al. (författare)
  • Acute short-term hyperoxia followed by mild hypoxia does not increase EPO production : resolving the "normobaric oxygen paradox''
  • 2012
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 112:3, s. 1059-1065
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent findings suggest that besides renal tissue hypoxia, relative decrements in tissue oxygenation, using a transition of the breathing mixture from hyperoxic to normoxic, can also stimulate erythropoietin (EPO) production. To further clarify the importance of the relative change in tissue oxygenation on plasma EPO concentration [EPO], we investigated the effect of a consecutive hyperoxic and hypoxic breathing intervention. Eighteen healthy male subjects were assigned to either IHH (N = 10) or CON (N = 8) group. The IHH group breathed pure oxygen (F(i)O(2) ~ 1.0) for 1 h, followed by a 1-h period of breathing a hypoxic gas mixture (F(i)O(2) ~ 0.15). The CON group breathed a normoxic gas mixture (F(i)O(2) ~ 0.21) for the same duration (2 h). Blood samples were taken just before, after 60 min, and immediately after the 2-h exposure period. Thereafter, samples were taken at 3, 5, 8, 24, 32, and 48 h after the exposure. During the breathing interventions, subjects remained in supine position. There were significant increases in absolute [EPO] within groups at 8 and 32 h in the CON and at 32 h only in the IHH group. No significant differences in absolute [EPO] were observed between groups following the intervention. Relative (∆[EPO]) levels were significantly lower in the IHH than in the CON group, 5 and 8 h following exposure. The tested protocol of consecutive hyperoxic-hypoxic gas mixture breathing did not induce [EPO] synthesis stimulation. Moreover, the transient attenuation in ∆[EPO] in the IHH group was most likely due to a hyperoxic suppression. Hence, our findings provide further evidence against the "normobaric O(2) paradox" theory.
  •  
8.
  • Debevec, Tadej, et al. (författare)
  • FemHab : The effects of bed rest and hypoxia on oxidative stress in healthy women
  • 2016
  • Ingår i: Journal of applied physiology. - : American Chemical Society (ACS). - 8750-7587 .- 1522-1601. ; 120:8, s. 930-938
  • Tidskriftsartikel (refereegranskat)abstract
    • Independently, both inactivity and hypoxia augment oxidative stress. This study, part of the FemHab project, investigated the combined effects of bed rest-induced unloading and hypoxic exposure on oxidative stress and antioxidant status. Healthy, eumenorrheic women were randomly assigned to the following three 10-day experimental interventions: normoxic bed rest (NBR; n = 11; PIO2 = 133 mmHg), normobaric hypoxic bed rest (HBR; n = 12; PIO2 = 90 mmHg), and ambulatory hypoxic confinement (HAMB; n = 8: PIO2 = 90 mmHg). Plasma samples, obtained before (Pre), during (D2, D6), immediately after (Post) and 24 h after (Post + 1) each intervention, were analyzed for oxidative stress markers [advanced oxidation protein products (AOPP), malondialdehyde (MDA), and nitrotyrosine], antioxidant status [ superoxide dismutase (SOD), catalase, ferric-reducing antioxidant power (FRAP), glutathione peroxidase (GPX), and uric acid (UA)], NO metabolism end-products (NOx), and nitrites. Compared with baseline, AOPP increased in NBR and HBR on D2 (+ 14%; + 12%; P < 0.05), D6 (+ 19%; + 15%; P < 0.05), and Post (+ 22%; + 21%; P < 0.05), respectively. MDA increased at Post + 1 in NBR (+ 116%; P < 0.01) and D2 in HBR (+114%; P < 0.01) and HAMB (+ 95%; P < 0.05). Nitrotyrosine decreased (-45%; P < 0.05) and nitrites increased (+46%; P < 0.05) at Post + 1 in HAMB only. Whereas SOD was higher at D6 (+ 82%) and Post + 1 (+ 67%) in HAMB only, the catalase activity increased on D6 (128%) and Post (146%) in HBR and HAMB, respectively (P < 0.05). GPX was only reduced on D6 (- 20%; P < 0.01) and Post (- 18%; P < 0.05) in HBR. No differences were observed in FRAP and NOx. UA was higher at Post in HBR compared with HAMB (P < 0.05). These data indicate that exposure to combined inactivity and hypoxia impairs prooxidant/antioxidant balance in healthy women. Moreover, habitual activity levels, as opposed to inactivity, seem to blunt hypoxia-related oxidative stress via antioxidant system upregulation.
  •  
9.
  • Debevec, Tadej, et al. (författare)
  • Separate and combined effects of 21-day bed rest and hypoxic confinement on body composition
  • 2014
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 114:11, s. 2411-2425
  • Tidskriftsartikel (refereegranskat)abstract
    • This study tested the hypothesis that hypoxia exacerbates reductions in body mass observed during unloading. To discern the separate and combined effects of simulated microgravity and hypoxia, 11 healthy males underwent three 21-day campaigns in a counterbalanced fashion: (1) normoxic bed rest (NBR; FiO2 = 0.209; PiO2 = 133.1 +/- A 0.3); (2) hypoxic ambulatory confinement (HAMB; FiO2 = 0.141 +/- A 0.004; PiO2 = 90.0 +/- A 0.4; similar to 4,000 m); and (3) hypoxic bed rest (HBR; FiO2 = 0.141 +/- A 0.004; PiO2 = 90.0 +/- A 0.4). The same dietary menu was applied in all campaigns. Targeted energy intakes were estimated individually using the Harris-Benedict equation taking into account whether the subjects were bedridden or ambulatory. Body mass and water balance were assessed throughout the campaigns. Whole body and regional body composition was determined before and after the campaigns using dual-energy X-ray absorptiometry. Before and during the campaigns, indirect calorimetry and visual analogue scores were employed to assess the resting energy expenditure (REE) and perceived appetite sensations, respectively. Energy intakes were lower than targeted in all campaigns (NBR: -5 %; HAMB: -14 %; HBR: -6 %; P < 0.01). Body mass significantly decreased following all campaigns (NBR: -3 %; HAMB: -4 %; HBR: -5 %; P < 0.01). While fat mass was not significantly altered, the whole body fat free mass was reduced (NBR: -4 %; HAMB: -5 %; HBR: -5 %; P < 0.01), secondary to lower limb fat-free mass reduction. Water balance was comparable between the campaigns. No changes were observed in REE and perceived appetite. Exposure to simulated altitude of similar to 4,000 m does not seem to worsen the whole body mass and fat-free mass reductions or alter resting energy expenditure and appetite during a 21-day simulated microgravity.
  •  
10.
  • Eiken, Ola, et al. (författare)
  • Blood pressure regulation V : in vivo mechanical properties of precapillary vessels as affected by long-term pressure loading and unloading
  • 2014
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 114:3, s. 499-509
  • Forskningsöversikt (refereegranskat)abstract
    • Recent studies are reviewed, concerning the in vivo wall stiffness of arteries and arterioles in healthy humans, and how these properties adapt to iterative increments or sustained reductions in local intravascular pressure. A novel technique was used, by which arterial and arteriolar stiffness were determined as changes in arterial diameter and flow, respectively, during graded increments in distending pressure in the blood vessels of an arm or a leg. Pressure-induced increases in diameter and flow were smaller in the lower leg than in the arm, indicating greater stiffness in the arteries/arterioles of the leg. A 5-wk period of intermittent intravascular pressure elevations in one arm reduced pressure distension and pressure-induced flow in the brachial artery by about 50%. Conversely, prolonged reduction of arterial/arteriolar pressure in the lower body by 5 wks of sustained horizontal bedrest, induced three-fold increases of the pressure-distension and pressure-flow responses in a tibial artery. Thus, the wall stiffness of arteries and arterioles are plastic properties that readily adapt to changes in the prevailing local intravascular pressure. The discussion concerns mechanisms underlying changes in local arterial/arteriolar stiffness as well as whether stiffness is altered by changes in myogenic tone and/or wall structure. As regards implications, regulation of local arterial/arteriolar stiffness may facilitate control of arterial pressure in erect posture and conditions of exaggerated intravascular pressure gradients. That increased intravascular pressure leads to increased arteriolar wall stiffness also supports the notion that local pressure loading may constitute a prime mover in the development of vascular changes in hypertension.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy