SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Clinical Medicine Clinical Laboratory Medicine) ;pers:(La Fleur Linnéa)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Clinical Medicine Clinical Laboratory Medicine) > La Fleur Linnéa

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Djureinovic, Dijana, et al. (författare)
  • Profiling cancer testis antigens in non-small-cell lung cancer
  • 2016
  • Ingår i: JCI INSIGHT. - : American Society for Clinical Investigation. - 2379-3708. ; 1:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non-small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.
  •  
2.
  • Grinberg, Marianna, et al. (författare)
  • Reaching the limits of prognostication in non-small cell lung cancer : an optimized biomarker panel fails to outperform clinical parameters.
  • 2017
  • Ingår i: Modern Pathology. - : Elsevier BV. - 0893-3952 .- 1530-0285. ; 30:7, s. 964-977
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous protein biomarkers have been analyzed to improve prognostication in non-small cell lung cancer, but have not yet demonstrated sufficient value to be introduced into clinical practice. Here, we aimed to develop and validate a prognostic model for surgically resected non-small cell lung cancer. A biomarker panel was selected based on (1) prognostic association in published literature, (2) prognostic association in gene expression data sets, (3) availability of reliable antibodies, and (4) representation of diverse biological processes. The five selected proteins (MKI67, EZH2, SLC2A1, CADM1, and NKX2-1 alias TTF1) were analyzed by immunohistochemistry on tissue microarrays including tissue from 326 non-small cell lung cancer patients. One score was obtained for each tumor and each protein. The scores were combined, with or without the inclusion of clinical parameters, and the best prognostic model was defined according to the corresponding concordance index (C-index). The best-performing model was subsequently validated in an independent cohort consisting of tissue from 345 non-small cell lung cancer patients. The model based only on protein expression did not perform better compared to clinicopathological parameters, whereas combining protein expression with clinicopathological data resulted in a slightly better prognostic performance (C-index: all non-small cell lung cancer 0.63 vs 0.64; adenocarcinoma: 0.66 vs 0.70, squamous cell carcinoma: 0.57 vs 0.56). However, this modest effect did not translate into a significantly improved accuracy of survival prediction. The combination of a prognostic biomarker panel with clinicopathological parameters did not improve survival prediction in non-small cell lung cancer, questioning the potential of immunohistochemistry-based assessment of protein biomarkers for prognostication in clinical practice.Modern Pathology advance online publication, 10 March 2017; doi:10.1038/modpathol.2017.14.
  •  
3.
  • Mignardi, Marco, et al. (författare)
  • Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ.
  • 2015
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 43:22
  • Tidskriftsartikel (refereegranskat)abstract
    • In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ.
  •  
4.
  • Biswas, Dhruva, et al. (författare)
  • A clonal expression biomarker associates with lung cancer mortality
  • 2019
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 25:10, s. 1540-1548
  • Tidskriftsartikel (refereegranskat)abstract
    • An aim of molecular biomarkers is to stratify patients with cancer into disease subtypes predictive of outcome, improving diagnostic precision beyond clinical descriptors such as tumor stage(1). Transcriptomic intratumor heterogeneity (RNA-ITH) has been shown to confound existing expression-based biomarkers across multiple cancer types(2-6). Here, we analyze multi-region whole-exome and RNA sequencing data for 156 tumor regions from 48 patients enrolled in the TRACERx study to explore and control for RNA-ITH in non-small cell lung cancer. We find that chromosomal instability is a major driver of RNA-ITH, and existing prognostic gene expression signatures are vulnerable to tumor sampling bias. To address this, we identify genes expressed homogeneously within individual tumors that encode expression modules of cancer cell proliferation and are often driven by DNA copy-number gains selected early in tumor evolution. Clonal transcriptomic biomarkers overcome tumor sampling bias, associate with survival independent of clinicopathological risk factors, and may provide a general strategy to refine biomarker design across cancer types.
  •  
5.
  • Salomonsson, Annette, et al. (författare)
  • Comprehensive analysis of RNA binding motif protein 3 (RBM3) in non-small cell lung cancer
  • 2020
  • Ingår i: Cancer Medicine. - : Blackwell Publishing Ltd. - 2045-7634. ; 9:15, s. 5609-5619
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims High expression of the RNA-binding motif protein 3 (RBM3) correlates with improved prognosis in several major types of cancer. The aim of the present study was to examine the prognostic value of RBM3 protein and mRNA expression in non-small cell lung cancer (NSCLC).Methods and results Immunohistochemical expression of RBM3 was evaluated in surgically treated NSCLC from two independent patient populations (n = 213 and n = 306). Staining patterns were correlated with clinicopathological parameters, overall survival (OS), and recurrence-free interval (RFI). Cases with high nuclear RBM3 protein expression had a prolonged 5-year OS in both cohorts when analyzing adenocarcinomas separately (P = .02 and P = .01). RBM3 remained an independent prognostic factor for OS in multivariable analysis of cohort I (HR 0.44, 95% CI 0.21-0.90) and for RFI in cohort II (HR 0.38, 95% CI 0.22-0.74). In squamous cell carcinoma, there was instead an insignificant association to poor prognosis. Also, the expression levels of RBM3 mRNA were investigated in 2087 lung adenocarcinomas and 899 squamous cell carcinomas assembled from 13 and 8 public gene expression microarray datasets, respectively. The RBM3 mRNA levels were not clearly associated with patient outcome in either adenocarcinomas or squamous cell carcinomas.Conclusions The results from this study support that high protein expression of RBM3 is linked to improved outcome in lung adenocarcinoma.
  •  
6.
  • Backman, Max, et al. (författare)
  • Infiltration of NK and plasma cells is associated with a distinct immune subset in non‐small cell lung cancer
  • 2021
  • Ingår i: Journal of Pathology. - : John Wiley & Sons. - 0022-3417 .- 1096-9896. ; 255:3, s. 243-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune cells of the tumor microenvironment are central but erratic targets for immunotherapy. The aim of this study was to characterize novel patterns of immune cell infiltration in non-small cell lung cancer (NSCLC) in relation to its molecular and clinicopathologic characteristics. Lymphocytes (CD3+, CD4+, CD8+, CD20+, FOXP3+, CD45RO+), macrophages (CD163+), plasma cells (CD138+), NK cells (NKp46+), PD1+, and PD-L1+ were annotated on a tissue microarray including 357 NSCLC cases. Somatic mutations were analyzed by targeted sequencing for 82 genes and a tumor mutational load score was estimated. Transcriptomic immune patterns were established in 197 patients based on RNA sequencing data. The immune cell infiltration was variable and showed only poor association with specific mutations. The previously defined immune phenotypic patterns, desert, inflamed, and immune excluded, comprised 30, 13, and 57% of cases, respectively. Notably, mRNA immune activation and high estimated tumor mutational load were unique only for the inflamed pattern. However, in the unsupervised cluster analysis, including all immune cell markers, these conceptual patterns were only weakly reproduced. Instead, four immune classes were identified: (1) high immune cell infiltration, (2) high immune cell infiltration with abundance of CD20+ B cells, (3) low immune cell infiltration, and (4) a phenotype with an imprint of plasma cells and NK cells. This latter class was linked to better survival despite exhibiting low expression of immune response-related genes (e.g. CXCL9, GZMB, INFG, CTLA4). This compartment-specific immune cell analysis in the context of the molecular and clinical background of NSCLC reveals two previously unrecognized immune classes. A refined immune classification, including traits of the humoral and innate immune response, is important to define the immunogenic potency of NSCLC in the era of immunotherapy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
  •  
7.
  • Bogatyrova, Olga, et al. (författare)
  • FGFR1 overexpression in non-small cell lung cancer is mediated by genetic and epigenetic mechanisms and is a determinant of FGFR1 inhibitor response
  • 2021
  • Ingår i: European Journal of Cancer. - : Elsevier. - 0959-8049 .- 1879-0852. ; 151, s. 136-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplification of fibroblast growth factor receptor 1 (FGFR1) in non-small cell lung cancer (NSCLC) has been considered as an actionable drug target. However, pan-FGFR tyrosine kinase inhibitors did not demonstrate convincing clinical efficacy in FGFR1-amplified NSCLC patients. This study aimed to characterise the molecular context of FGFR1 expression and to define biomarkers predictive of FGFR1 inhibitor response.In this study, 635 NSCLC samples were characterised for FGFR1 protein expression by immunohistochemistry and copy number gain (CNG) by in situ hybridisation (n = 298) or DNA microarray (n = 189). FGFR1 gene expression (n = 369) and immune cell profiles (n = 309) were also examined. Furthermore, gene expression, methylation and microRNA data from The Cancer Genome Atlas (TCGA) were compared. A panel of FGFR1-amplified NSCLC patient-derived xenograft (PDX) models were tested for response to the selective FGFR1 antagonist M6123.A minority of patients demonstrated FGFR1 CNG (10.5%) or increased FGFR1 mRNA (8.7%) and protein expression (4.4%). FGFR1 CNG correlated weakly with FGFR1 gene and protein expression. Tumours overexpressing FGFR1 protein were typically devoid of driver alterations (e.g. EGFR, KRAS) and showed reduced infiltration of T-lymphocytes and lower PD-L1 expression. Promoter methylation and microRNA were identified as regulators of FGFR1 expression in NSCLC and other cancers. Finally, NSCLC PDX models demonstrating FGFR1 amplification and FGFR1 protein overexpression were sensitive to M6123.The unique molecular and immune features of tumours with high FGFR1 expression provide a rationale to stratify patients in future clinical trials of FGFR1 pathway-targeting agents.
  •  
8.
  • Elfving, Hedvig, et al. (författare)
  • Evaluation of NTRK immunohistochemistry as a screening method for NTRK gene fusion detection in non-small cell lung cancer
  • 2021
  • Ingår i: Lung Cancer. - : Elsevier. - 0169-5002 .- 1872-8332. ; 151, s. 53-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The small molecule inhibitors larotrectinib and entrectinib have recently been approved as cancer agnostic drugs in patients with tumours harbouring a rearrangement of the neurotrophic tropomyosin receptor kinase (NTRK). These oncogenic fusions are estimated to occur in 0.1-3 % of non-small cell lung cancers (NSCLC). Although molecular techniques are most reliable for fusion detection, immunohistochemical analysis is considered valuable for screening. Therefore, we evaluated the newly introduced diagnostic immunohistochemical assay (clone EPR17341) on a representative NSCLC cohort.Methods: Cancer tissue from 688 clinically and molecularly extensively annotated NSCLC patients were comprised on tissue microarrays and stained with the pan-TRK antibody clone EPR17341. Positive cases were further analysed with the TruSight Tumor 170 RNA assay (Illumina). Selected cases were also tested with a NanoString NTRK fusion assay. For 199 cases, NTRK RNA expression data were available from previous RNA sequencing analysis.Results: Altogether, staining patterns for 617 NSCLC cases were evaluable. Of these, four cases (0.6 %) demonstrated a strong diffuse cytoplasmic and membranous staining, and seven cases a moderate staining (1.1 %). NanoString or TST170-analysis could not confirm an NTRK fusion in any of the IHC positive cases, or any of the cases with high mRNA levels. In the four cases with strong staining intensity in the tissue microarray, whole section staining revealed marked heterogeneity of NTRK protein expression.Conclusion: The presence of NTRK fusion genes in non-small cell lung cancer is exceedingly rare. The use of the immunohistochemical NTRK assay will result in a small number of false positive cases. This should be considered when the assay is applied as a screening tool in clinical diagnostics.
  •  
9.
  • Goldmann, Torsten, et al. (författare)
  • PD-L1 amplification is associated with an immune cell rich phenotype in squamous cell cancer of the lung
  • 2021
  • Ingår i: Cancer Immunology and Immunotherapy. - : Springer Nature. - 0340-7004 .- 1432-0851. ; 70:9, s. 2577-2587
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene amplification is considered to be one responsible cause for upregulation of Programmed Death Ligand-1 (PD-L1) in non-small cell lung cancer (NSCLC) and to represent a specific molecular subgroup possibly associated with immunotherapy response. Our aim was to analyze the frequency of PD-L1 amplification, its relation to PD-L1 mRNA and protein expression, and to characterize the immune microenvironment of amplified cases. The study was based on two independent NSCLC cohorts, including 354 and 349 cases, respectively. Tissue microarrays were used to evaluate PD-L1 amplification by FISH and PD-L1 protein by immunohistochemistry. Immune infiltrates were characterized immunohistochemically by a panel of immune markers (CD3, CD4, CD8, PD-1, Foxp3, CD20, CD138, CD168, CD45RO, NKp46). Mutational status was determined by targeted sequencing. RNAseq data was available for 197 patients. PD-L1 amplification was detected in 4.5% of all evaluable cases. PD-L1 amplification correlated only weakly with mRNA and protein expression. About 37% of amplified cases were negative for PD-L1 protein. PD-L1 amplification did not show any association with the mutational status. In squamous cell cancer, PD-L1 amplified cases were enriched among patients with high tumoral immune cell infiltration and showed gene expression profiles related to immune exhaustion. In conclusion, PD-L1 amplification correlates with PD-L1 expression in squamous cell cancer and was associated with an immune cell rich tumor phenotype. The correlative findings help to understand the role of PD-L1 amplification as an important immune escape mechanism in NSCLC and suggest the need to further evaluate PD-L1 amplification as predictive biomarker for checkpoint inhibitor therapy.
  •  
10.
  • Karlsson, Anna, et al. (författare)
  • Gene Expression Profiling of Large Cell Lung Cancer Links Transcriptional Phenotypes to the New Histological WHO 2015 Classification
  • 2017
  • Ingår i: Journal of Thoracic Oncology. - : ELSEVIER SCIENCE INC. - 1556-0864 .- 1556-1380. ; 12:8, s. 1257-1267
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Large cell lung cancer (LCLC) and large cell neuroendocrine carcinoma (LCNEC) constitute a small proportion of NSCLC. The WHO 2015 classification guidelines changed the definition of the debated histological subtype LCLC to be based on immunomarkers for adenocarcinoma and squamous cancer. We sought to determine whether these new guidelines also translate into the transcriptional landscape of lung cancer, and LCLC specifically.Methods: Gene expression profiling was performed by using Illumina V4 HT12 microarrays (Illumina, San Diego, CA) on samples from 159 cases (comprising all histological subtypes, including 10 classified as LCLC WHO 2015 and 14 classified as LCNEC according to the WHO 2015 guidelines), with complimentary mutational and immunohistochemical data. Derived transcriptional phenotypes were validated in 199 independent tumors, including six WHO 2015 LCLCs and five LCNECs.Results: Unsupervised analysis of gene expression data identified a phenotype comprising 90% of WHO 2015 LCLC tumors, with characteristics of poorly differentiated proliferatiVe cancer, a 90% tumor protein p53 gene (TP53) mutation rate, and lack of well-known NSCLC oncogene driver alterations. Validation in independent data confirmed aggregation of WHO 2015 LCLCs in the specific phenotype. For LCNEC tumors, the unsupervised gene expression analysis suggested two different transcriptional patterns corresponding to a proposed genetic division of LCNEC tumors into SCLC-like and NSCLC-like cancer on the basis of TP53 and retinoblastoma 1 gene (RB1) alteration patterns.Conclusions: Refined classification of LCLC has implications for diagnosis, prognostics, and therapy decisions. Our molecular analyses support the WHO 2015 classification of LCLC and LCNEC tumors, which herein follow different tumorigenic paths and can accordingly be stratified into different transcriptional subgroups, thus linking diagnostic immunohistochemical staining driven classification with the transcriptional landscape of lung cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy