SwePub
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "AMNE:(MEDICAL AND HEALTH SCIENCES Medical Biotechnology Other Medical Biotechnology) ;pers:(Mattsson C. Mikael)"

Sökning: AMNE:(MEDICAL AND HEALTH SCIENCES Medical Biotechnology Other Medical Biotechnology) > Mattsson C. Mikael

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Glas, Peter, et al. (författare)
  • Physiological requirements of elite handball – measured with a combination of local positioning system and heart rate monitoring.
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • For all athletes, it is important to adjust training plans and competition schedule according to each individual's specific traits and situation. This is crucial in team sports, where players, despite being involved in the same sport, and even on the same team, may have very different physiological capacities and, also have completed a wide variety of work in both training and match situations. A first step towards being able to carry out individualized training is to accurately measure the amount of stress (physiological burden) for each individual. The purpose of the study was to create a comprehensive picture of the physical requirements of elite handball matches, and further investigate how the relationship between work load and physical capacity impacts performance.Heart rate measurements have since decades been used to quantify the relative work, and GPS measurement as a tool for objective values has been available for outdoor sports for about ten years, but GPS is not possible to use indoors. We have used a new technology with a similar system for indoor use called Local Positioning System (LPS) (Kinexon Precision Technologies, Münich, Germany) to record and analyze the players’ motion during games, and we have combined that technology with data from accelerometry, gyroscope and heart rate measurements.So far, 42 handball matches have been measured and analyzed, ranging from juniors (9 games U21 men's national team) to seniors, men and women, and both in Sweden’s highest league and between national teams (Women: 8 national and 7 international games; Men: 14 national and 4 international games).A first "result" is that the categorization of motion patterns need to be adapted to each sport. For example, some moves that should be counted as accelerations in handball are not recognized by the system, simply because it has been adapted to the pattern of motion on the much larger soccer field. This is similarly important to realize when comparing results for handball’s physiological requirements reached using other technologies. In this presentation, we will in part discuss the future technological opportunities, and in part report descriptive results, including how fast and far the players move, as well as differences between men and women, between national and international games, and between juniors and seniors.
  •  
3.
  • Shcherbina, Anna, et al. (författare)
  • Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort
  • 2016
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background: The ability to measure activity and physiology through wrist-worn devices provides an opportunity for cardiovascular medicine. However, the accuracy of commercial devices is largely unknown. Objective: To assess the accuracy of seven commercially available wrist-worn devices in estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor evaluation framework. Methods: We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 +/- 11 years) of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and EE was computed for each subject/device/activity combination. Results: Devices reported the lowest error for cycling and the highest for walking. Device error was higher for males, greater body mass index, darker skin tone, and walking. Six of the devices achieved a median error for HR below 5% during cycling. No device achieved an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in both HR and EE, while the Samsung Gear S2 reported the highest. Conclusions: Most wrist-worn devices adequately measure HR in laboratory-based activities, but poorly estimate EE, suggesting caution in the use of EE measurements as part of health improvement programs. We propose reference standards for the validation of consumer health devices (http://precision.stanford.edu/).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy