SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Endokrinologi och diabetes) ;pers:(Florez Jose C.)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Endokrinologi och diabetes) > Florez Jose C.

  • Resultat 1-10 av 64
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Saxena, Richa, et al. (författare)
  • Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:2, s. 142-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958–30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, β (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 × 10−15). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 × 10−17; ratio of insulin to glucose area under the curve, P = 1.3 × 10−16) and diminished incretin effect (n = 804; P = 4.3 × 10−4). We also identified variants at ADCY5 (rs2877716, P = 4.2 × 10−16), VPS13C (rs17271305, P = 4.1 × 10−8), GCKR (rs1260326, P = 7.1 × 10−11) and TCF7L2 (rs7903146, P = 4.2 × 10−10) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09–1.15, P = 4.8 × 10−18).
  •  
2.
  • Voight, Benjamin F., et al. (författare)
  • Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:7, s. 579-589
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 x 10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
  •  
3.
  • Scott, Robert A., et al. (författare)
  • An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:11, s. 2888-2902
  • Tidskriftsartikel (refereegranskat)abstract
    • To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 x 10(-8)), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.
  •  
4.
  • Saxena, Richa, et al. (författare)
  • Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels
  • 2007
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 316:5829, s. 1331-1336
  • Tidskriftsartikel (refereegranskat)abstract
    • New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D - in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1 - and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.
  •  
5.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
6.
  • Prokopenko, Inga, et al. (författare)
  • Variants in MTNR1B influence fasting glucose levels
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 77-81
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
  •  
7.
  • Varga, Tibor V., et al. (författare)
  • Comprehensive Analysis of Established Dyslipidemia-Associated Loci in the Diabetes Prevention Program
  • 2016
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 1942-325X .- 1942-3268. ; 9:6, s. 495-503
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We assessed whether 234 established dyslipidemia-associated loci modify the effects of metformin treatment and lifestyle intervention (versus placebo control) on lipid and lipid subfraction levels in the Diabetes Prevention Program randomized controlled trial. Methods and Results: We tested gene treatment interactions in relation to baseline-adjusted follow-up blood lipid concentrations (high-density lipoprotein [HDL] and low-density lipoprotein-cholesterol, total cholesterol, and triglycerides) and lipoprotein subfraction particle concentrations and size in 2993 participants with pre-diabetes. Of the previously reported single-nucleotide polymorphism associations, 32.5% replicated at P<0.05 with baseline lipid traits. Trait-specific genetic risk scores were robustly associated (3x10(-4)>P>1.1x10(-16)) with their respective baseline traits for all but 2 traits. Lifestyle modified the effect of the genetic risk score for large HDL particle numbers, such that each risk allele of the genetic risk scores was associated with lower concentrations of large HDL particles at follow-up in the lifestyle arm (beta=-0.11 mu mol/L per genetic risk scores risk allele; 95% confidence interval, -0.188 to -0.033; P=5x10(-3); P-interaction=1x10(-3) for lifestyle versus placebo), but not in the metformin or placebo arms (P>0.05). In the lifestyle arm, participants with high genetic risk had more favorable or similar trait levels at 1-year compared with participants at lower genetic risk at baseline for 17 of the 20 traits. Conclusions: Improvements in large HDL particle concentrations conferred by lifestyle may be diminished by genetic factors. Lifestyle intervention, however, was successful in offsetting unfavorable genetic loading for most lipid traits.
  •  
8.
  • Chung, Wendy K., et al. (författare)
  • Precision medicine in diabetes : a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
  • 2020
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 63:9, s. 1671-1693
  • Tidskriftsartikel (refereegranskat)abstract
    • The convergence of advances in medical science, human biology, data science and technology has enabled the generation of new insights into the phenotype known as ‘diabetes’. Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment) and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e. monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realise its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
  •  
9.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children.
  • 2011
  • Ingår i: PLoS medicine. - : Public Library of Science (PLoS). - 1549-1676 .- 1549-1277. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). METHODS AND FINDINGS: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction)  = 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio  = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio  = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.
  •  
10.
  • Mansour Aly, Dina, et al. (författare)
  • Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes
  • 2021
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 53, s. 1534-1542
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes has been reproducibly clustered into five subtypes with different disease progression and risk of complications; however, etiological differences are unknown. We used genome-wide association and genetic risk score (GRS) analysis to compare the underlying genetic drivers. Individuals from the Swedish ANDIS (All New Diabetics In Scania) study were compared to individuals without diabetes; the Finnish DIREVA (Diabetes register in Vasa) and Botnia studies were used for replication. We show that subtypes differ with regard to family history of diabetes and association with GRS for diabetes-related traits. The severe insulin-resistant subtype was uniquely associated with GRS for fasting insulin but not with variants in the TCF7L2 locus or GRS reflecting insulin secretion. Further, an SNP (rs10824307) near LRMDA was uniquely associated with mild obesity-related diabetes. Therefore, we conclude that the subtypes have partially distinct genetic backgrounds indicating etiological differences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 64
Typ av publikation
tidskriftsartikel (59)
forskningsöversikt (3)
konferensbidrag (2)
Typ av innehåll
refereegranskat (64)
Författare/redaktör
Groop, Leif (26)
Franks, Paul W. (26)
McCarthy, Mark I (24)
Meigs, James B. (23)
Jablonski, Kathleen ... (23)
Tuomi, Tiinamaija (21)
visa fler...
Boehnke, Michael (21)
Dupuis, Josée (21)
Altshuler, David (20)
Wareham, Nicholas J. (19)
Langenberg, Claudia (19)
Knowler, William C. (19)
Tuomilehto, Jaakko (19)
Laakso, Markku (18)
Barroso, Ines (18)
Jackson, Anne U. (17)
Kuusisto, Johanna (16)
Mohlke, Karen L (16)
Prokopenko, Inga (16)
Franks, Paul (15)
Lyssenko, Valeriya (15)
Hansen, Torben (15)
Lind, Lars (14)
Isomaa, Bo (14)
Froguel, Philippe (14)
Collins, Francis S. (14)
Grarup, Niels (13)
Loos, Ruth J F (13)
Hivert, Marie-France (13)
Lindgren, Cecilia M. (13)
Morris, Andrew P. (13)
Pedersen, Oluf (12)
Hu, Frank B. (12)
Walker, Mark (12)
Palmer, Colin N. A. (12)
Frayling, Timothy M (12)
Grallert, Harald (12)
Kahn, Steven E. (12)
Scott, Robert A (11)
Hattersley, Andrew T (11)
Mahajan, Anubha (11)
Saxena, Richa (11)
Pankow, James S. (11)
Bonnycastle, Lori L. (11)
Ingelsson, Erik (10)
Shuldiner, Alan R. (10)
Kovacs, Peter (10)
Morris, Andrew D (10)
Delahanty, Linda M. (10)
Stumvoll, Michael (10)
visa färre...
Lärosäte
Lunds universitet (60)
Umeå universitet (26)
Uppsala universitet (19)
Karolinska Institutet (15)
Göteborgs universitet (5)
Stockholms universitet (2)
Språk
Engelska (64)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (64)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy