SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Endokrinologi och diabetes) ;pers:(Renström Erik)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Endokrinologi och diabetes) > Renström Erik

  • Resultat 1-10 av 92
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • King, Ben C., et al. (författare)
  • ­­­Intracellular cytosolic complement component C3 regulates cytoprotective autophagy in pancreatic beta cells by interaction with ATG16L1
  • 2019
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 15:5, s. 919-921
  • Tidskriftsartikel (refereegranskat)abstract
    • Complement component C3 is central to the complement system, a humoral effector mechanism of innate immune defense. When activated, C3 covalently binds to target particles, marking them for uptake and clearance by phagocytosis. We now show that C3 also exists within the cytosol where it interacts with ATG16L1, and is therefore involved in the intracellular clearance and recycling of material by macroautophagy/autophagy in pancreatic beta cells. C3 is highly expressed in isolated human islets, and its expression is upregulated in islets isolated from diabetic patients and rodents, and correlates with patient HBA1c and body mass index (BMI). Knockout of C3 in clonal beta cells leads to dysfunctional autophagy, and increased cell death after challenge with diabetogenic stresses, which are usually alleviated by increased autophagic turnover. However, autophagic degradation of INS (insulin) granules regulates total INS content, and increased autophagy due to C3 upregulation may deplete beta cell INS stores. C3 is therefore required for efficient autophagic turnover in beta cells, and is upregulated as a cytoprotective factor during diabetes.
  •  
2.
  • Golec, Ewelina, et al. (författare)
  • Alternative splicing encodes functional intracellular CD59 isoforms that mediate insulin secretion and are down-regulated in diabetic islets
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 119:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Human pancreatic islets highly express CD59, which is a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein and is required for insulin secretion. How cell-surface CD59 could interact with intracellular exocytotic machinery has so far not been described. We now demonstrate the existence of CD59 splice variants in human pancreatic islets, which have unique C-terminal domains replacing the GPI-anchoring signal sequence. These isoforms are found in the cytosol of beta-cells, interact with SNARE proteins VAMP2 and SNAP25, colocalize with insulin granules, and rescue insulin secretion in CD59-knockout (KO) cells. We therefore named these isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2). Antibodies raised against each isoform revealed that expression of both IRIS-1 and IRIS-2 is significantly lower in islets isolated from human type 2 diabetes (T2D) patients, as compared to healthy controls. Further, glucotoxicity induced in primary, healthy human islets led to a significant decrease of IRIS-1 expression, suggesting that hyperglycemia (raised glucose levels) and subsequent decreased IRIS-1 expression may contribute to relative insulin deficiency in T2D patients. Similar isoforms were also identified in the mouse CD59B gene, and targeted CRISPR/Cas9-mediated knockout showed that these intracellular isoforms, but not canonical CD59B, are involved in insulin secretion from mouse beta-cells. Mouse IRIS-2 is also down-regulated in diabetic db/db mouse islets. These findings establish the endogenous existence of previously undescribed non-GPI-anchored intracellular isoforms of human CD59 and mouse CD59B, which are required for normal insulin secretion.
  •  
3.
  • Paul-Visse, Gesine, et al. (författare)
  • The adult human brain harbors multipotent perivascular mesenchymal stem cells.
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain.
  •  
4.
  • Guo, Qingqing, et al. (författare)
  • Reduced volume of diabetic pancreatic islets in rodents detected by synchrotron X-ray phase-contrast microtomography and deep learning network
  • 2023
  • Ingår i: Heliyon. - : Elsevier BV. - 2405-8440. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The pancreatic islet is a highly structured micro-organ that produces insulin in response to rising blood glucose. Here we develop a label-free and automatic imaging approach to visualize the islets in situ in diabetic rodents by the synchrotron radiation X-ray phase-contrast microtomography (SRμCT) at the ID17 station of the European Synchrotron Radiation Facility. The large-size images (3.2 mm × 15.97 mm) were acquired in the pancreas in STZ-treated mice and diabetic GK rats. Each pancreas was dissected by 3000 reconstructed images. The image datasets were further analysed by a self-developed deep learning method, AA-Net. All islets in the pancreas were segmented and visualized by the three-dimension (3D) reconstruction. After quantifying the volumes of the islets, we found that the number of larger islets (=>1500 μm3) was reduced by 2-fold (wt 1004 ± 94 vs GK 419 ± 122, P < 0.001) in chronically developed diabetic GK rat, while in STZ-treated diabetic mouse the large islets were decreased by half (189 ± 33 vs 90 ± 29, P < 0.001) compared to the untreated mice. Our study provides a label-free tool for detecting and quantifying pancreatic islets in situ. It implies the possibility of monitoring the state of pancreatic islets in vivo diabetes without labelling.
  •  
5.
  • Kulak, Klaudia, et al. (författare)
  • The human serum protein C4b-binding protein inhibits pancreatic IAPP-induced inflammasome activation
  • 2017
  • Ingår i: Diabetologia. - : SPRINGER. - 0012-186X .- 1432-0428. ; 60:8, s. 1522-1533
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Inflammasome activation and subsequent IL-1 beta production is a driver of islet pathology in type 2 diabetes. Oligomers, but not mature amyloid fibrils, of human islet amyloid polypeptide (IAPP), which is co-secreted with insulin, trigger NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome activation. C4b-binding protein (C4BP), present in serum, binds to IAPP and affects transition of IAPP monomers and oligomers to amyloid fibrils. We therefore hypothesised that C4BP inhibits IAPP-mediated inflammasome activation and IL-1 beta production.Methods: Macrophages were exposed to IAPP in the presence or absence of plasma-purified human C4BP, and inflammasome activation was assessed by IL-1 beta secretion as detected by ELISA and reporter cell lines. IAPP fibrillation was assessed by thioflavin T assay. Uptake of IAPP-C4BP complexes and their effects on phagolysosomal stability were assessed by flow cytometry and confocal microscopy. The effect of C4BP regulation of IAPP-mediated inflammasome activation on beta cell function was assessed using a clonal rat beta cell line. Immunohistochemistry was used to examine the association of IAPP amyloid deposits and macrophage infiltration in isolated human and mouse pancreatic islets, and expression of C4BP from isolated human pancreatic islets was assessed by quantitative PCR, immunohistochemistry and western blot.Results: C4BP significantly inhibited IAPP-mediated IL-1 beta secretion from primed macrophages at physiological concentrations in a dose-dependent manner. C4BP bound to and was internalised together with IAPP. C4BP did not affect IAPP uptake into phagolysosomal compartments, although it did inhibit its formation into amyloid fibrils. The loss of macrophage phagolysosomal integrity induced by IAPP incubation was inhibited by co-incubation with C4BP. Supernatant fractions from macrophages activated with IAPP inhibited both insulin secretion and viability of clonal beta cells in an IL-1 beta-dependent manner but the presence of C4BP during macrophage IAPP incubation rescued beta cell function and viability. In human and mouse islets, the presence of amyloid deposits correlated with higher numbers of infiltrating macrophages. Isolated human islets expressed and secreted C4BP, which increased with addition of IL-1 beta.Conclusions/interpretation: IAPP deposition is associated with inflammatory cell infiltrates in pancreatic islets. C4BP blocks IAPP-induced inflammasome activation by preventing the loss of macrophage phagolysosomal integrity required for NLRP3 activation. The consequence of this is the preservation of beta cell function and viability. C4BP is secreted directly from human pancreatic islets and this increases in response to inflammatory cytokines. We therefore propose that C4BP acts as an extracellular chaperone protein that limits the proinflammatory effects of IAPP.
  •  
6.
  • Rorsman, Patrik, et al. (författare)
  • Insulin granule dynamics in pancreatic beta cells
  • 2003
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 46:8, s. 1029-1045
  • Forskningsöversikt (refereegranskat)abstract
    • Glucose-induced insulin secretion in response to a step increase in blood glucose concentrations follows a biphasic time course consisting of a rapid and transient first phase followed by a slowly developing and sustained second phase. Because Type 2 diabetes involves defects of insulin secretion, manifested as a loss of first phase and a reduction of second phase, it is important to understand the cellular mechanisms underlying biphasic insulin secretion. Insulin release involves the packaging of insulin in small (diameter approximate to0.3 mum) secretory granules, the trafficking of these granules to the plasma membrane, the exocytotic fusion of the granules with the plasma membrane and eventually the retrieval of the secreted membranes by endocytosis. Until recently, studies on insulin secretion have been confined to the appearance of insulin in the extracellular space and the cellular events preceding exocytosis have been inaccessible to more detailed analysis. Evidence from a variety of secretory tissues, including pancreatic islet cells suggests, however, that the secretory granules can be functionally divided into distinct pools that are distinguished by their release competence and/or proximity to the plasma membrane. The introduction of fluorescent proteins that can be targeted to the secretory granules, in combination with the advent of new techniques that allow real-time imaging of granule trafficking in living cells (granule dynamics), has led to an explosion of our knowledge of the pre-exocytotic and post-exocytotic processes in the beta cell. Here we discuss these observations in relation to previous functional and ultra-structural data as well as the secretory defects of Type 2 diabetes.
  •  
7.
  • Bompada, Pradeep, et al. (författare)
  • Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease
  • 2021
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • There is emerging evidence of an association between epigenetic modifications, glycemic control and atherosclerosis risk. In this study, we mapped genome-wide epigenetic changes in patients with type 2 diabetes (T2D) and advanced atherosclerotic disease. We performed chromatin immunoprecipitation sequencing (ChIP-seq) using a histone 3 lysine 9 acetylation (H3K9ac) mark in peripheral blood mononuclear cells from patients with atherosclerosis with T2D (n = 8) or without T2D (ND, n = 10). We mapped epigenome changes and identified 23,394 and 13,133 peaks in ND and T2D individuals, respectively. Out of all the peaks, 753 domains near the transcription start site (TSS) were unique to T2D. We found that T2D in atherosclerosis leads to an H3K9ac increase in 118, and loss in 63 genomic regions. Furthermore, we discovered an association between the genomic locations of significant H3K9ac changes with genetic variants identified in previous T2D GWAS. The transcription factor 7-like 2 (TCF7L2) rs7903146, together with several human leukocyte antigen (HLA) variants, were among the domains with the most dramatic changes of H3K9ac enrichments. Pathway analysis revealed multiple activated pathways involved in immunity, including type 1 diabetes. Our results present novel evidence on the interaction between genetics and epigenetics, as well as epigenetic changes related to immunity in patients with T2D and advanced atherosclerotic disease.
  •  
8.
  • Yingying, Ye, et al. (författare)
  • The TCF7L2-dependent high-voltage activated calcium channel subunit α2δ-1 controls calcium signaling in rodent pancreatic beta-cells
  • 2020
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 502, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor TCF7L2 remains the most important diabetes gene identified to date and genetic risk carriers exhibit lower insulin secretion. We show that Tcf7l2 regulates the auxiliary subunit of voltage-gated Ca2+ channels, Cacna2d1 gene/α2δ-1 protein levels. Furthermore, suppression of α2δ-1 decreased voltage-gated Ca2+ currents and high glucose/depolarization-evoked Ca2+ signaling which mimicked the effect of silencing of Tcf7l2. This appears to be the result of impaired voltage-gated Ca2+ channel trafficking to the plasma membrane, as Cav1.2 channels accumulated in the recycling endosomes after α2δ-1 suppression, in clonal as well as primary rodent beta-cells. This impaired the capacity for glucose-induced insulin secretion in Cacna2d1-silenced cells. Overexpression of α2δ-1 increased high-glucose/K+-stimulated insulin secretion. Furthermore, overexpression of α2δ-1 in Tcf7l2-silenced cells rescued the Tcf7l2-dependent impairment of Ca2+ signaling, but not the reduced insulin secretion. Taken together, these data clarify the connection between Tcf7l2, α2δ-1 in Ca2+-dependent insulin secretion.
  •  
9.
  • Sjölander, Jonatan, et al. (författare)
  • Islet amyloid polypeptide triggers limited complement activation and binds complement inhibitor C4b-binding protein, which enhances fibril formation.
  • 2012
  • Ingår i: Journal of Biological Chemistry. - 1083-351X .- 0021-9258. ; 287:14, s. 10824-10833
  • Tidskriftsartikel (refereegranskat)abstract
    • Islet amyloid polypeptide (IAPP) is synthesized in pancreatic β-cells and co-secreted with insulin. Aggregation and formation of IAPP-amyloid plays a critical role in β-cell death in type 2 diabetic patients. Since Aβ-fibrils in Alzheimer's disease activate the complement system, we have here investigated specific interactions between IAPP and complement factors. IAPP fibrils triggered limited activation of complement in vitro, involving both the classical and the alternative pathways. Direct binding assays confirmed that IAPP fibrils interact with globular head domains of complement initiator C1q. Furthermore, IAPP also bound complement inhibitors factor H and C4b-binding protein (C4BP). Recombinant C4BP mutants were used to show that complement control protein (CCP) domains 8 and 2 of the α-chain were responsible for the strong, hydrophobic binding of C4BP to IAPP. Immunostaining of pancreatic sections from type 2 diabetic patients revealed the presence of complement factors in the islets and varying degree of co-localization between IAPP fibrils and C1q, C3d as well as C4BP and FH but not membrane attack complex. Furthermore, C4BP enhanced formation of IAPP fibrils in vitro. We conclude that C4BP binds to IAPP thereby limiting complement activation and may be enhancing formation of IAPP fibrils from cytotoxic oligomers.
  •  
10.
  • Rosengren, Anders, et al. (författare)
  • Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 327:5962, s. 217-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Several common genetic variations have been associated with type 2 diabetes, but the exact disease mechanisms are still poorly elucidated. Using congenic strains from the diabetic Goto-Kakizaki rat, we identified a 1.4-megabase genomic locus that was linked to impaired insulin granule docking at the plasma membrane and reduced beta cell exocytosis. In this locus, Adra2a, encoding the alpha2A-adrenergic receptor [alpha(2A)AR], was significantly overexpressed. Alpha(2A)AR mediates adrenergic suppression of insulin secretion. Pharmacological receptor antagonism, silencing of receptor expression, or blockade of downstream effectors rescued insulin secretion in congenic islets. Furthermore, we identified a single-nucleotide polymorphism in the human ADRA2A gene for which risk allele carriers exhibited overexpression of alpha(2A)AR, reduced insulin secretion, and increased type 2 diabetes risk. Human pancreatic islets from risk allele carriers exhibited reduced granule docking and secreted less insulin in response to glucose; both effects were counteracted by pharmacological alpha(2A)AR antagonists.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 92
Typ av publikation
tidskriftsartikel (77)
konferensbidrag (12)
forskningsöversikt (2)
annan publikation (1)
Typ av innehåll
refereegranskat (90)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Eliasson, Lena (25)
Rorsman, Patrik (24)
Zhang, Enming (22)
Groop, Leif (18)
Rosengren, Anders (14)
visa fler...
Luan, Cheng (13)
Hansson, Ola (12)
Krus, Ulrika (10)
Barg, Sebastian (9)
Taneera, Jalal (8)
Jing, Xingjun (8)
Lyssenko, Valeriya (7)
Ivarsson, Rosita (7)
Salehi, S Albert (6)
Nagaraj, Vini (6)
Zhou, Yuedan (6)
Blom, Anna M. (6)
Barghouth, Mohammad (6)
Reinbothe, Thomas (6)
Ahlqvist, Emma (5)
Mulder, Hindrik (5)
De Marinis, Yang (5)
Artner, Isabella (5)
King, Ben C. (5)
Korsgren, Olle (4)
Wierup, Nils (4)
Blom, Anna (4)
Lang, Stefan (4)
Osmark, Peter (4)
Wollheim, Claes (4)
Galvanovskis, Juris (4)
Ahren, Bo (3)
Tuomi, Tiinamaija (3)
Fadista, Joao (3)
Wollheim, Claes B. (3)
Luthman, Holger (3)
Li, Dai-Qing (3)
Berggren, Per-Olof (3)
Jonsson, Anna (3)
Prasad, Rashmi B. (3)
Storm, Petter (3)
Ladenvall, Claes (3)
Salehi, Albert (3)
Singh, Tania (3)
Axelsson, Annika (3)
Tang, Yunzhao (3)
Göpel, Sven (3)
Bokvist, K (3)
Gromada, Jesper (3)
visa färre...
Lärosäte
Lunds universitet (92)
Uppsala universitet (16)
Karolinska Institutet (10)
Göteborgs universitet (4)
Kungliga Tekniska Högskolan (2)
Umeå universitet (1)
visa fler...
Högskolan i Halmstad (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (92)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (92)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy