SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Hematologi) ;pers:(Rosenquist R.)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Hematologi) > Rosenquist R.

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdulla, Maysaa, et al. (författare)
  • Cell-of-origin determined by both gene expression profiling and immunohistochemistry is the strongest predictor of survival in patients with diffuse large B-cell lymphoma
  • 2020
  • Ingår i: American Journal of Hematology. - : Wiley. - 0361-8609 .- 1096-8652. ; 95:1, s. 57-67
  • Tidskriftsartikel (refereegranskat)abstract
    • The tumor cells in diffuse large B-cell lymphomas (DLBCL) are considered to originate from germinal center derived B-cells (GCB) or activated B-cells (ABC). Gene expression profiling (GEP) is preferably used to determine the cell of origin (COO). However, GEP is not widely applied in clinical practice and consequently, several algorithms based on immunohistochemistry (IHC) have been developed. Our aim was to evaluate the concordance of COO assignment between the Lymph2Cx GEP assay and the IHC-based Hans algorithm, to decide which model is the best survival predictor. Both GEP and IHC were performed in 359 homogenously treated Swedish and Danish DLBCL patients, in a retrospective multicenter cohort. The overall concordance between GEP and IHC algorithm was 72%; GEP classified 85% of cases assigned as GCB by IHC, as GCB, while 58% classified as non-GCB by IHC, were categorized as ABC by GEP. There were significant survival differences (overall survival and progression-free survival) if cases were classified by GEP, whereas if cases were categorized by IHC only progression-free survival differed significantly. Importantly, patients assigned as non-GCB/ABC both by IHC and GEP had the worst prognosis, which was also significant in multivariate analyses. Double expression of MYC and BCL2 was more common in ABC cases and was associated with a dismal outcome. In conclusion, to determine COO both by IHC and GEP is the strongest outcome predictor to identify DLBCL patients with the worst outcome.
  •  
2.
  • Stamatopoulos, Kostas, et al. (författare)
  • Antigen receptor stereotypy in chronic lymphocytic leukemia
  • 2017
  • Ingår i: Leukemia. - : NATURE PUBLISHING GROUP. - 0887-6924 .- 1476-5551. ; 31:2, s. 282-291
  • Forskningsöversikt (refereegranskat)abstract
    • The discovery of almost identical or 'stereotyped' B-cell receptor immunoglobulins (BcR IG) among unrelated patients with chronic lymphocytic leukemia (CLL) cemented the idea of antigen selection in disease ontogeny and evolution. The systematic analysis of the stereotypy phenomenon in CLL revealed that around one-third of CLL patients may be grouped into subsets based on shared sequence motifs within the variable heavy complementarity determining region 3. Stereotyped subsets display a strikingly similar biology of the leukemic clones, referring to many different levels, from the immunogenetic and genetic and extending to the epigenetic and functional levels. Even more importantly, the homogeneity of stereotyped subsets has clinical consequences as patients assigned to the same stereotyped subset generally exhibit an overall similar disease course and outcome. In other words, stereotypy-based patient classification of CLL has already provided a more compartmentalized view of this otherwise heterogeneous disease and can assist in refining prognostication models. While this is relevant only for the one-third of cases expressing stereotyped BcR IG; in principle, however, the findings from further analysis of the stereotyped subsets may also contribute towards improved understanding of the remaining non-stereotyped fraction of CLL patients.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Leeksma, AC, et al. (författare)
  • Genomic arrays identify high-risk chronic lymphocytic leukemia with genomic complexity: a multi-center study
  • 2021
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 1592-8721 .- 0390-6078. ; 106:1, s. 87-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Complex karyotype (CK) identified by chromosome-banding analysis (CBA) has shown prognostic value in chronic lymphocytic leukemia (CLL). Genomic arrays offer high-resolution genome-wide detection of copy-number alterations (CNAs) and could therefore be well equipped to detect the presence of a CK. Current knowledge on genomic arrays in CLL is based on outcomes of single center studies, in which different cutoffs for CNA calling were used. To further determine the clinical utility of genomic arrays for CNA assessment in CLL diagnostics, we retrospectively analyzed 2293 arrays from 13 diagnostic laboratories according to established standards. CNAs were found outside regions captured by CLL FISH probes in 34% of patients, and several of them including gains of 8q, deletions of 9p and 18p (p<0.01) were linked to poor outcome after correction for multiple testing. Patients (n=972) could be divided in three distinct prognostic subgroups based on the number of CNAs. Only high genomic complexity (high-GC), defined as ≥5 CNAs emerged as an independent adverse prognosticator on multivariable analysis for time to first treatment (Hazard ratio: 2.15, 95% CI: 1.36-3.41; p=0.001) and overall survival (Hazard ratio: 2.54, 95% CI: 1.54-4.17; p<0.001; n=528). Lowering the size cutoff to 1 Mb in 647 patients did not significantly improve risk assessment. Genomic arrays detected more chromosomal abnormalities and performed at least as well in terms of risk stratification compared to simultaneous chromosome banding analysis as determined in 122 patients. Our findings highlight genomic array as an accurate tool for CLL risk stratification.
  •  
8.
  •  
9.
  • Sutton, LA, et al. (författare)
  • Comparative analysis of targeted next-generation sequencing panels for the detection of gene mutations in chronic lymphocytic leukemia: an ERIC multi-center study
  • 2021
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 1592-8721 .- 0390-6078. ; 106:3, s. 682-691
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-generation sequencing (NGS) has transitioned from research to clinical routine, yet the comparability of different technologies for mutation profiling remains an open question. We performed a European multicenter (n=6) evaluation of three amplicon-based NGS assays targeting 11 genes recurrently mutated in chronic lymphocytic leukemia. Each assay was assessed by two centers using 48 pre-characterized chronic lymphocytic leukemia samples; libraries were sequenced on the Illumina MiSeq instrument and bioinformatics analyses were centralized. Across all centers the median percentage of target reads ≥100x ranged from 94.2-99.8%. To rule out assay-specific technical variability, we first assessed variant calling at the individual assay level i.e. pairwise analysis of variants detected amongst partner centers. After filtering for variants present in the paired normal sample and removal of PCR/sequencing artefacts, the panels achieved 96.2% (Multiplicom), 97.7% (TruSeq) and 90% (HaloPlex) concordance at a VAF >0.5%. Reproducibility was assessed by looking at the inter-laboratory variation in detecting mutations and 107/115 (93% concordance) of mutations were detected by all 6 centers, while the remaining 8/115 (7%) variants were undetected by a single center and 6/8 of these variants concerned minor subclonal mutations (VAF <5%). We sought to investigate low-frequency mutations further by using a high-sensitivity assay containing unique molecular identifiers, which confirmed the presence of several minor subclonal mutations. Thus, while amplicon-based approaches can be adopted for somatic mutation detection with VAFs >5%, after rigorous validation, the use of unique molecular identifiers may be necessary to reach a higher sensitivity and ensure consistent and accurate detection of low-frequency variants.
  •  
10.
  • Walsh, SH, et al. (författare)
  • Mutated V-H genes and preferential V(H)3-21 use define new subsets of mantle cell lymphoma
  • 2003
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 101:10, s. 4047-4054
  • Tidskriftsartikel (refereegranskat)abstract
    • Mantle cell lymphoma (MCL) is believed to originate from a naive B cell. However, we recently demonstrated that a subset of MCL displayed mutated V-H genes. We also reported restricted use of certain V-H genes. To assess the prognostic impact of these new findings, we performed V-H gene analysis of 110 patients, revealing that 18 (16%) patients had mutated and 92 (84%) patients had unmutated V-H genes. Because the mutation rate was low in the mutated group (2.2%-6.7%), further investigation of the germline V-H gene in T cells from 5 patients with mutated V-H genes was carried out; results showed that the unrearranged V-H gene was identical to the published sequence. These data confirm that the base pair substitutions within the rearranged V-H genes represent hyper-mutations, and indicate germinal center exposure. However, V-H gene mutation status did not correlate with prognosis because there was no difference in clinical outcome between the unmutated and mutated groups. The most frequently used V-H genes were V(H)3-21 (21 patients) and V(H)4-34 (19 patients). A novel finding was that V(H)3-21(+) MCL almost exclusively ex-pressed X light chains and displayed highly restricted use of the V(lambda)3-19 gene. V(H)3-21(+) patients had longer median survival than the remaining patients (53 vs 34 months; P = .03), but they tended to be younger at diagnosis. The combined use Of V(H)3-21/V(lambda)3-19 suggests a possible role for antigen(s) in the pathogenesis of these tumors and indicates that V(H)3-21(+) patients constitute a new MCL entity. (C) 2003 by The American Society of Hematology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy