SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Ortopedi) ;pers:(Isaksson Hanna)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Ortopedi) > Isaksson Hanna

  • Resultat 1-10 av 57
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grassi, Lorenzo, et al. (författare)
  • 3D Finite Element Models Reconstructed From 2D Dual-Energy X-Ray Absorptiometry (DXA) Images Improve Hip Fracture Prediction Compared to Areal BMD in Osteoporotic Fractures in Men (MrOS) Sweden Cohort
  • 2023
  • Ingår i: Journal of Bone and Mineral Research. - : John Wiley & Sons. - 0884-0431 .- 1523-4681. ; 38:9, s. 1258-1267
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone strength is an important contributor to fracture risk. Areal bone mineral density (aBMD) derived from dual-energy X-ray absorptiometry (DXA) is used as a surrogate for bone strength in fracture risk prediction tools. 3D finite element (FE) models predict bone strength better than aBMD, but their clinical use is limited by the need for 3D computed tomography and lack of automation. We have earlier developed amethod to reconstruct the 3D hip anatomy froma 2D DXA image, followed by subject-specific FE-based prediction of proximal femoral strength. In the current study, we aim to evaluate the method's ability to predict incident hip fractures in a populationbased cohort (Osteoporotic Fractures in Men [MrOS] Sweden). We defined two subcohorts: (i) hip fracture cases and controls cohort: 120men with a hip fracture (<10 years frombaseline) and two controls to each hip fracture case, matched by age, height, and body mass index; and (ii) fallers cohort: 86men who had fallen the year before their hip DXA scan was acquired, 15 of which sustained a hip fracture during the following 10 years. For each participant, we reconstructed the 3D hip anatomy and predicted proximal femoral strength in 10 sideways fall configurations using FE analysis. The FE-predicted proximal femoral strength was a better predictor of incident hip fractures than aBMD for both hip fracture cases and controls (difference in area under the receiver operating characteristics curve, Delta AUROC = 0.06) and fallers (Delta AUROC = 0.22) cohorts. This is the first time that FE models outperformed aBMD in predicting incident hip fractures in a population-based prospectively followed cohort based on 3D FE models obtained from a 2D DXA scan. Our approach has potential to notably improve the accuracy of fracture risk predictions in a clinically feasible manner (only one single DXA image is needed) and without additional costs compared to the current clinical approach.
  •  
2.
  • Le Cann, Sophie, et al. (författare)
  • Investigating the mechanical characteristics of bone-metal implant interface using in situ synchrotron tomographic imaging
  • 2019
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media SA. - 2296-4185. ; 6:JAN
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term stability of endosseous implants depends on successful bone formation, ingrowth and adaptation to the implant. Specifically, it will define the mechanical properties of the newly formed bone-implant interface. 3D imaging during mechanical loading tests (in situ loading) can improve the understanding of the local processes leading to bone damage and failure. In this study, titanium screws were implanted into rat tibiae and were allowed to integrate for 4 weeks with or without the addition of the growth factor Bone Morphogenetic Protein and the bisphosphonate Zoledronic Acid. Samples were subjected to in situ pullout using high-resolution synchrotron x-ray tomography at the Tomcat beamline (SLS, PSI, Switzerland) at 30 keV with 25 ms exposure time, resulting in a total acquisition time of 45 s per scan, with a 3.6 μm isotropic voxel size. Using a custom-made loading device positioned inside the beamline, screws were pulled out with 0.05 mm increment, acquiring multiple scans until rupture of the sample. The in situ loading protocol was adapted to ensure short imaging time, which enabled multiple samples to be tested with short loading steps, while keeping the total testing time low and reducing dose deposition. Higher trabecular bone content was quantified in the surrounding of the screw in the treated groups, which correlated with increased mechanical strength and stiffness. Differences in screw implantation, such as contact between threads and cortex as well as minor tilt of the screw were also correlated to the mechanical parameters. In situ loading enabled the investigation of crack propagation during the pullout, highlighting the mechanical behavior of the interface. Three typical crack types were observed: (1) rupture at the interface of trabecular and cortical bone tissues, close to the screw, (2) large crack inside the cortex connected to the implant, and (3) first failure away from the screw with cracks propagating toward the screw-bone interface. Mechanical properties of in vivo integrated bone-metal screws rely on a combination of multiple parameters that are difficult to identify and separate one from the other.
  •  
3.
  • Liu, Yang, et al. (författare)
  • Sustained and controlled delivery of doxorubicin from an in-situ setting biphasic hydroxyapatite carrier for local treatment of a highly proliferative human osteosarcoma
  • 2021
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061. ; 131, s. 555-571
  • Tidskriftsartikel (refereegranskat)abstract
    • Doxorubicin (DOX) is a cornerstone drug in the treatment of osteosarcoma. However, achieving sufficient concentration in the tumor tissue after systemic administration with few side effects has been a challenge. Even with the most advanced nanotechnology approaches, less than 5% of the total administered drug gets delivered to the target site. Alternatives to increase the local concentration of DOX within the tumor using improved drug delivery methods are needed. In this study, we evaluate a clinically approved calcium sulfate/hydroxyapatite (CaS/HA) carrier, both in-vitro and in-vivo, for local, sustained and controlled delivery of DOX to improve osteosarcoma treatment. In-vitro drug release studies indicated that nearly 28% and 36% of the loaded drug was released over a period of 4-weeks at physiological pH (7.4) and acidic pH (5), respectively. About 63% of the drug had been released after 4-weeks in-vivo. The efficacy of the released drug from the CaS/HA material was verified on two human osteosarcoma cell lines MG-63 and 143B. It was demonstrated that the released drug fractions functioned the same way as the free drug without impacting its efficacy. Finally, the carrier system with DOX was assessed using two clinically relevant human osteosarcoma xenograft models. Compared to no treatment or the clinical standard of care with systemic DOX administration, the delivery of DOX using a CaS/HA biomaterial could significantly hinder tumor progression by inhibiting angiogenesis and cell proliferation. Our results indicate that a clinically approved CaS/HA biomaterial containing cytostatics could potentially be used for the local treatment of osteosarcoma. Statement of significance: The triad of doxorubicin (DOX), methotrexate and cisplatin has routinely been used for the treatment of osteosarcoma. These drugs dramatically improved the prognosis, but 45-55% of the patients respond poorly to the treatment with low 5-year survival. In the present study, we repurpose the cornerstone drug DOX by embedding it in a calcium sulfate/hydroxyapatite (CaS/HA) biomaterial, ensuring a spatio-temporal drug release and a hypothetically higher and longer lasting intra-tumoral concentration of DOX. This delivery system could dramatically hinder the progression of a highly aggressive osteosarcoma compared to systemic administration, by inhibiting angiogenesis and cell proliferation. Our data show an efficient method for supplementary osteosarcoma treatment with possible rapid translational potential due to clinically approved constituents.
  •  
4.
  • Raina, Deepak Bushan, et al. (författare)
  • A facile one-stage treatment of critical bone defects using a calcium sulfate/hydroxyapatite biomaterial providing spatiotemporal delivery of bone morphogenic protein-2 and zoledronic acid
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:48
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone morphogenic proteins (BMPs) are the only true osteoinductive molecules. Despite being tremendously potent, their clinical use has been limited for reasons including supraphysiological doses, suboptimal delivery systems, and the pro-osteoclast effect of BMPs. Efforts to achieve spatially controlled bone formation using BMPs are being made. We demonstrate that a carrier consisting of a powder of calcium sulfate/hydroxyapatite (CaS/HA) mixed with bone active molecules provides an efficient drug delivery platform for critical femoral defect healing in rats. The bone-active molecules were composed of osteoinductive rhBMP-2 and the bisphosphonate, and zoledronic acid (ZA) was chosen to overcome BMP-2-induced bone resorption. It was demonstrated that delivery of rhBMP-2 was necessary for critical defect healing and restoration of mechanical properties, but codelivery of BMP-2 and ZA led to denser and stronger fracture calluses. Together, the CaS/HA biomaterial with rhBMP-2 and/or ZA can potentially be used as an off-the-shelf alternative to autograft bone.
  •  
5.
  • Raina, Deepak Bushan, et al. (författare)
  • Gelatin- hydroxyapatite- calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation : In-vitro and in-vivo carrier properties
  • 2018
  • Ingår i: Journal of Controlled Release. - : Elsevier BV. - 0168-3659 .- 1873-4995. ; 272, s. 83-96
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, a novel macroporous composite biomaterial consisting of gelatin-hydroxyapatite-calcium sulphate for delivery of bone morphogenic protein-2 (rhBMP-2) and zoledronic acid (ZA) has been developed. The biomaterial scaffold has a porous structure and functionalization of the scaffold with rhBMP-2 induces osteogenic differentiation of MC3T3-e1 cells seen by a significant increase in biochemical and genetic markers of osteoblastic differentiation. In-vivo muscle pouch experiments showed higher mineralization using scaffold + rhBMP-2 when compared to an approved absorbable collagen sponge (ACS) + rhBMP-2 as verified by micro-CT. Co-delivery of rhBMP-2 + ZA via the novel scaffold enabled a reduction in the effective rhBMP-2 doses. The presence of tartrate resistant acid phosphatase staining in the rhBMP-2 group indicates osteoclastic resorption, which could be stalled by adding ZA, which by speculation could explain the net increase in mineralization. The new scaffold allowed for slow release of rhBMP-2 in-vitro (3.3 ± 0.1%) after 4 weeks. Using single photon emission computed tomography (SPECT), the release kinetics of 125I–rhBMP-2 in-vivo was followed for 4 weeks and a total of 65.3 ± 15.2% 125I–rhBMP-2 was released from the scaffolds. In-vitro 14C–ZA release curve shows an initial burst release on day 1 (8.8 ± 0.7%) followed by a slow release during the following 4 weeks (13 ± 0.1%). In-vivo, an initial release of 43.2 ± 7.6% of 14C–ZA was detected after 1 day, after which the scaffold retained the remaining ZA during 4-weeks. Taken together, our results show that the developed biomaterial is an efficient carrier for spatio-temporal delivery of rhBMP-2 and ZA leading to increased bone formation compared to commercially available carrier for rhBMP-2.
  •  
6.
  • Raina, Deepak Bushan, et al. (författare)
  • Guided tissue engineering for healing of cancellous and cortical bone using a combination of biomaterial based scaffolding and local bone active molecule delivery
  • 2019
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612 .- 1878-5905. ; 188, s. 38-49
  • Tidskriftsartikel (refereegranskat)abstract
    • A metaphyseal bone defect due to infection, tumor or fracture leads to loss of cancellous and cortical bone. An animal model separating the cancellous and cortical healing was used with a combination of a macroporous gelatin-calcium sulphate-hydroxyapatite (Gel-CaS-HA) biomaterial as a cancellous defect filler, and a thin collagen membrane (CM) guiding cortical bone regeneration. The membrane was immobilized with bone morphogenic protein-2 (rhBMP-2) to enhance the osteoinductive properties. The Gel-CaS-HA cancellous defect filler contained both rhBMP-2 and a bisphosphonate, (zoledronate = ZA) to prevent premature callus resorption induced by the pro-osteoclast effect of rhBMP-2 alone. In the first part of the study, the CM delivering both rhBMP-2 and ZA was tested in a muscle pouch model in rats and the co-delivery of rhBMP-2 and ZA via the CM resulted in higher amounts of bone compared to rhBMP-2 alone. Secondly, an established tibia defect model in rats was used to study cortical and cancellous bone regeneration. The defect was left empty, filled with Gel-CaS-HA alone, Gel-CaS-HA immobilized with ZA or Gel-CaS-HA immobilized with rhBMP-2+ZA. Functionalization of the Gel-CaS-HA scaffold with bioactive molecules produced significantly more bone in the cancellous defect and its surroundings but cortical defect healing was delayed likely due to the protrusion of the Gel-CaS-HA into the cortical bone. To guide cortical regeneration, the cortical defect was sealed endosteally by a CM with or without rhBMP-2. Subsequently, the cancellous defect was filled with Gel-CaS-HA containing ZA and rhBMP-2+ZA. In the groups where the CM was doped with rhBMP-2, significantly higher number of cortices bridged. The approach to guide cancellous as well as cortical bone regeneration separately in a metaphyseal defect using two bioactive molecule immobilized biomaterials is promising and could improve the clinical care of patients with metaphyseal defects.
  •  
7.
  • Raina, Deepak Bushan, et al. (författare)
  • Synthesis and Characterization of a Biocomposite Bone Bandage for Controlled Delivery of Bone-Active Drugs in Fracture Nonunions
  • 2020
  • Ingår i: ACS Biomaterials Science and Engineering. - : American Chemical Society (ACS). - 2373-9878. ; 6:5, s. 2867-2878
  • Tidskriftsartikel (refereegranskat)abstract
    • Fracture nonunions are common in orthopedics and their treatment often involves multiple surgical interventions. The aim of this study was to fabricate and characterize a gelatin-nano-hydroxyapatite membrane (GM)-based bone bandage for controlled delivery of bio-active molecules; recombinant human bone morphogenic protein-2 (rhBMP-2) and zoledronic acid (ZA) to promote osteoinduction and prevent callus resorption, respectively. In vitro cell-material interaction experiments using MC3T3 cells seeded on the GM indicated good biocompatibility. rhBMP-2-functionalized GM promoted osteogenic differentiation of MC3T3 cells and the rhBMP-2 bio-activity thus remained, as indicated by increased levels of alkaline phosphatase compared to only GM. The GM released a small amount (1.1%) of rhBMP-2 in vitro over a period of 5 weeks, demonstrating a strong interaction of rhBMP-2 with the GM. In the first animal study, the GM specimens loaded with rhBMP-2 or with the combination of rhBMP-2 + ZA were placed in the abdominal muscle pouch of rats. In the GM + rhBMP-2 + ZA group, significantly higher bone volume (21.5 ± 5.9 vs 2.7 ± 1.0 mm3) and area (3.3 ± 2.3 vs 1.0 ± 0.4 mm2) of bone were observed compared to GM + rhBMP-2 after 4 weeks, as indicated by micro-computed tomography and histomorphometry, respectively. Finally, a nonunion model in rats was used to evaluate the efficacy of the GM bandage and bio-active molecules in healing of fracture nonunions. The GM functionalized with rhBMP-2 + ZA led to higher bone formation around the fracture (63.9 ± 19.0 vs 31.8 ± 3.7 mm3) and stronger fracture callus (110.8 ± 46.8 vs 45.6 ± 17.8 N) compared to the empty controls. However, the overall union rate was only marginally improved. The GM alone or combined with ZA did not aid in bone healing in this model. Thus, this study shows that controlled delivery of rhBMP-2 + ZA via the developed GM is a promising approach that could aid in earlier full load bearing in patients with nonunion.
  •  
8.
  • Isaksson, Hanna, et al. (författare)
  • Neutron tomographic imaging of bone-implant interface : Comparison with X-ray tomography
  • 2017
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282. ; 103, s. 295-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal implants, in e.g. joint replacements, are generally considered to be a success. As mechanical stability is important for the longevity of a prosthesis, the biological reaction of the bone to the mechanical loading conditions after implantation and during remodelling determines its fate. The bone reaction at the implant interface can be studied using high-resolution imaging. However, commonly used X-ray imaging suffers from image artefacts in the close proximity of metal implants, which limit the possibility to closely examine the bone at the bone-implant interface. An alternative ex vivo 3D imaging method is offered by neutron tomography. Neutrons interact with matter differently than X-rays; therefore, this study explores if neutron tomography may be used to enrich studies on bone-implant interfaces. A stainless steel screw was implanted in a rat tibia and left to integrate for 6 weeks. After extracting the tibia, the bone-screw construct was imaged using X-ray and neutron tomography at different resolutions. Artefacts were visible in all X-ray images in the close proximity of the implant, which limited the ability to accurately quantify the bone around the implant. In contrast, neutron images were free of metal artefacts, enabling full analysis of the bone-implant interface. Trabecular structural bone parameters were quantified in the metaphyseal bone away from the implant using all imaging modalities. The structural bone parameters were similar for all images except for the lowest resolution neutron images. This study presents the first proof-of-concept that neutron tomographic imaging can be used for ex-vivo evaluation of bone microstructure and that it constitutes a viable, new tool to study the bone-implant interface tissue remodelling.
  •  
9.
  • Khayyeri, Hanifeh, et al. (författare)
  • A Fibre-Reinforced Poroviscoelastic Model Accurately Describes the Biomechanical Behaviour of the Rat Achilles Tendon
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Computational models of Achilles tendons can help understanding how healthy tendons are affected by repetitive loading and how the different tissue constituents contribute to the tendons biomechanical response. However, available models of Achilles tendon are limited in their description of the hierarchical multi-structural composition of the tissue. This study hypothesised that a poroviscoelastic fibre-reinforced model, previously successful in capturing cartilage biomechanical behaviour, can depict the biomechanical behaviour of the rat Achilles tendon found experimentally. Materials and Methods We developed a new material model of the Achilles tendon, which considers the tendons main constituents namely: water, proteoglycan matrix and collagen fibres. A hyperelastic formulation of the proteoglycan matrix enabled computations of large deformations of the tendon, and collagen fibres were modelled as viscoelastic. Specimen-specific finite element models were created of 9 rat Achilles tendons from an animal experiment and simulations were carried out following a repetitive tensile loading protocol. The material model parameters were calibrated against data from the rats by minimising the root mean squared error (RMS) between experimental force data and model output. Results and Conclusions All specimen models were successfully fitted to experimental data with high accuracy (RMS 0.42-1.02). Additional simulations predicted more compliant and soft tendon behaviour at reduced strain-rates compared to higher strain-rates that produce a stiff and brittle tendon response. Stress-relaxation simulations exhibited strain-dependent stress-relaxation behaviour where larger strains produced slower relaxation rates compared to smaller strain levels. Our simulations showed that the collagen fibres in the Achilles tendon are the main load-bearing component during tensile loading, where the orientation of the collagen fibres plays an important role for the tendons viscoelastic response. In conclusion, this model can capture the repetitive loading and unloading behaviour of intact and healthy Achilles tendons, which is a critical first step towards understanding tendon homeostasis and function as this biomechanical response changes in diseased tendons.
  •  
10.
  • Perdikouri, Christina, et al. (författare)
  • Characterizing the Composition of Bone Formed During Fracture Healing Using Scanning Electron Microscopy Techniques.
  • 2015
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 1432-0827 .- 0171-967X. ; 96:1, s. 11-17
  • Tidskriftsartikel (refereegranskat)abstract
    • About 5-10 % of all bone fractures suffer from delayed healing, which may lead to non-union. Bone morphogenetic proteins (BMPs) can be used to induce differentiation of osteoblasts and enhance the formation of the bony callus, and bisphosphonates help to retain the newly formed callus. The aim of this study was to investigate if scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) can identify differences in the mineral composition of the newly formed bone compared to cortical bone from a non-fractured control. Moreover, we investigate whether the use of BMPs and bisphosphonates-alone or combined-may have an effect on bone mineralization and composition. Twelve male Sprague-Dawley rats at 9 weeks of age were randomly divided into four groups and treated with (A) saline, (B) BMP-7, (C) bisphosphonates (Zoledronate), and (D) BMP-7 + Zoledronate. The rats were sacrificed after 6 weeks. All samples were imaged using SEM and chemically analyzed with EDS to quantify the amount of C, N, Ca, P, O, Na, and Mg. The Ca/P ratio was the primary outcome. In the fractured samples, two areas of interest were chosen for chemical analysis with EDS: the callus and the cortical bone. In the non-fractured samples, only the cortex was analyzed. Our results showed that the element composition varied to a small extent between the callus and the cortical bone in the fractured bones. However, the Ca/P ratio did not differ significantly, suggesting that the mineralization at all sites is similar 6 weeks post-fracture in this rat model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 57

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy