SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Radiologi och bildbehandling) ;pers:(Tolmachev Vladimir)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Klinisk medicin Radiologi och bildbehandling) > Tolmachev Vladimir

  • Resultat 1-10 av 176
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tolmachev, Vladimir, et al. (författare)
  • Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR In-111-DOTA-Z(EGFR:2377) Affibody molecule : aspect of the injected tracer amount
  • 2010
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 37:3, s. 613-622
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of epidermal growth factor receptor (EGFR) is a prognostic and predictive biomarker in a number of malignant tumours. Radionuclide molecular imaging of EGFR expression in cancer could influence patient management. However, EGFR expression in normal tissues might complicate in vivo imaging. The aim of this study was to evaluate if optimization of the injected protein dose might improve imaging of EGFR expression in tumours using a novel EGFR-targeting protein, the DOTA-Z(EGFR:2377) Affibody molecule. An anti-EGFR Affibody molecule, Z(EGFR:2377), was labelled with In-111 via the DOTA chelator site-specifically conjugated to a C-terminal cysteine. The affinity of DOTA-Z(EGFR:2377) for murine and human EGFR was measured by surface plasmon resonance. The cellular processing of In-111-DOTA-Z(EGFR:2377) was evaluated in vitro. The biodistribution of radiolabelled Affibody molecules injected in a broad range of injected Affibody protein doses was evaluated in mice bearing EGFR-expressing A431 xenografts. Site-specific coupling of DOTA provided a uniform conjugate possessing equal affinity for human and murine EGFR. The internalization of In-111-DOTA-Z(EGFR:2377) by A431 cells was slow. In vivo, the conjugate accumulated specifically in xenografts and in EGFR-expressing tissues. The curve representing the dependence of tumour uptake on the injected Affibody protein dose was bell-shaped. The highest specific radioactivity (lowest injected protein dose) provided a suboptimal tumour-to-blood ratio. The results of the biodistribution study were confirmed by gamma-camera imaging. The In-111-DOTA-Z(EGFR:2377) Affibody molecule is a promising tracer for radionuclide molecular imaging of EGFR expression in malignant tumours. Careful optimization of protein dose is required for high-contrast imaging of EGFR expression in vivo.
  •  
2.
  • Rosestedt, Maria, et al. (författare)
  • Affibody-mediated PET imaging of HER3 expression in malignant tumours
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Human epidermal growth factor receptor 3(HER3) is involved in the progression of various cancers and in resistance to therapies targeting the HER family. In vivo imaging of HER3 expression would enable patient stratification for anti-HER3 immunotherapy. Key challenges with HER3-targeting are the relatively low expression in HER3-positive tumours and HER3 expression in normal tissues. The use of positron-emission tomography (PET) provides advantages of high resolution, sensitivity and quantification accuracy compared to SPECT. Affibody molecules, imaging probes based on a non-immunoglobulin scaffold, provide high imaging contrast shortly after injection. The aim of this study was to evaluate feasibility of PET imaging of HER3 expression using 68Ga-labeled affibody molecules. The anti-HER3 affibody molecule HEHEHE-Z08698-NOTA was successfully labelled with 68Ga with high yield, purity and stability. The agent bound specifically to HER3-expressing cancer cells in vitro and in vivo. At 3 h pi, uptake of 68Ga-HEHEHE-Z08698-NOTA was significantly higher in xenografts with high HER3 expression (BT474, BxPC-3) than in xenografts with low HER3 expression (A431). In xenografts with high expression, tumour-to-blood ratios were >20, tumour-to-muscle >15, and tumour-to-bone >7. HER3-positive xenografts were visualised using microPET 3 h pi. In conclusion, PET imaging of HER3 expression is feasible using 68Ga-HEHEHE-Z08698-NOTA shortly after administration.
  •  
3.
  • Abouzayed, Ayman, et al. (författare)
  • The GRPR Antagonist [Tc-99m]Tc-maSSS-PEG(2)-RM26 towards Phase I Clinical Trial : Kit Preparation, Characterization and Toxicity
  • 2023
  • Ingår i: Diagnostics. - : MDPI AG. - 2075-4418. ; 13:9, s. 1611-
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastrin-releasing peptide receptors (GRPRs) are overexpressed in the majority of primary prostate tumors and in prostatic lymph node and bone metastases. Several GRPR antagonists were developed for SPECT and PET imaging of prostate cancer. We previously reported a preclinical evaluation of the GRPR antagonist [Tc-99m]Tc-maSSS-PEG2-RM26 (based on [D-Phe(6), Sta(13), Leu(14)-NH2]BBN(6-14)) which bound to GRPR with high affinity and had a favorable biodistribution profile in tumor-bearing animal models. In this study, we aimed to prepare and test kits for prospective use in an early-phase clinical study. The kits were prepared to allow for a one-pot single-step radiolabeling with technetium-99m pertechnetate. The kit vials were tested for sterility and labeling efficacy. The radiolabeled by using the kit GRPR antagonist was evaluated in vitro for binding specificity to GRPR on PC-3 cells (GRPR-positive). In vivo, the toxicity of the kit constituents was evaluated in rats. The labeling efficacy of the kits stored at 4 degrees C was monitored for 18 months. The biological properties of [Tc-99m]Tc-maSSS-PEG2-RM26, which were obtained after this period, were examined both in vitro and in vivo. The one-pot (gluconic acid, ethylenediaminetetraacetic acid, stannous chloride, and maSSS-PEG(2)-RM26) single-step radiolabeling with technetium-99m was successful with high radiochemical yields (>97%) and high molar activities (16-24 MBq/nmol). The radiolabeled peptide maintained its binding properties to GRPR. The kit constituents were sterile and non-toxic when tested in living subjects. In conclusion, the prepared kit is considered safe in animal models and can be further evaluated for use in clinics.
  •  
4.
  • Ahlgren, Sara, 1979- (författare)
  • Molecular Radionuclide Imaging Using Site-specifically Labelled Recombinant Affibody Molecules : Preparation and Preclinical Evaluation
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Radionuclide molecular imaging is an emerging multidisciplinary technique that is used in modern medicine to visualise diseases at cellular and molecular levels. This thesis is based on five papers (I-V) and focuses on the development of site-specific radiolabelled recombinant anti-HER2 Affibody molecules and preclinical evaluations in vitro and in vivo of the labelled conjugates. This work is part of a preclinical development of an Affibody molecule-based tracer for molecular imaging of HER2 expressing tumours. Papers I and II report the evaluation of the Affibody molecule ZHER2:2395-C, site-specifically labelled with the radiometals 111In (for SPECT) and 57Co (as a surrogate for 55Co, suitable for PET applications) using a thiol reactive DOTA derivative as a chelator. Both conjugates demonstrated very suitable biodistribution properties, enabling high contrast imaging just a few hours after injection. Papers III and IV report the development and optimization of a technique for site-specific labelling of ZHER2:2395-C with 99mTc using an N3S chelating peptide sequence. 99mTc-ZHER2:2395-C demonstrated high and specific tumour uptake and rapid clearance of non-bound tracer from the blood, resulting in high tumour-to-non-tumour ratios shortly after injection, enabling high contrast imaging. In addition, in the study described in paper IV, freeze-dried kits previously developed for 99mTc-labelling were optimised, resulting in the development of a kit in which all the reagents and protein needed for labelling of ZHER2:2395-C with 99mTc were contained in a single vial. Paper V reports the evaluation of an anti-HER2 Affibody molecule, ABY-025, with a fundamentally re-engineered scaffold. Despite the profound re-engineering, the biodistribution pattern of 111In-ABY-025 was very similar to that of two variants of the parental molecule. It seems reasonable to believe that these results will also be applicable to Affibody molecules towards other targets. Hopefully, this work will also be helpful in the development of other small proteinaceous tracers.
  •  
5.
  • Liu, Yongsheng, et al. (författare)
  • Radionuclide Therapy of HER2-Expressing Xenografts Using [Lu-177]Lu-ABY-027 Affibody Molecule Alone and in Combination with Trastuzumab
  • 2023
  • Ingår i: Cancers. - : MDPI. - 2072-6694. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are artificial proteins that can recognize cancer-related molecular abnormalities in the living body. Clinical studies demonstrated that Affibody molecules can be successfully used for radionuclide diagnostics. Targeted radionuclide therapy selectively delivers cytotoxic radionuclides to malignant tumors, thus sparing normal tissues. For radionuclide therapy, Affibody molecules were re-engineered to decrease accumulation in the kidneys. This study has demonstrated that radionuclide therapy using re-engineered Affibody molecules increases the survival of immunodeficient mice bearing human tumors. The therapy was more efficient than the treatment with a monoclonal antibody, which is currently used in clinical practice. The best results were obtained when both the antibody and radiolabeled Affibody molecules were used simultaneously. This work provides a preclinical rationale for a potentially more efficient treatment in HER2-positive cancers.ABY-027 is a scaffold-protein-based cancer-targeting agent. ABY-027 includes the second-generation Affibody molecule Z(HER2:2891), which binds to human epidermal growth factor receptor type 2 (HER2). An engineered albumin-binding domain is fused to Z(HER2:2891) to reduce renal uptake and increase bioavailability. The agent can be site-specifically labeled with a beta-emitting radionuclide Lu-177 using a DOTA chelator. The goals of this study were to test the hypotheses that a targeted radionuclide therapy using [Lu-177]Lu-ABY-027 could extend the survival of mice with HER2-expressing human xenografts and that co-treatment with [Lu-177]Lu-ABY-027 and the HER2-targeting antibody trastuzumab could enhance this effect. Balb/C nu/nu mice bearing HER2-expressing SKOV-3 xenografts were used as in vivo models. A pre-injection of trastuzumab did not reduce the uptake of [Lu-177]Lu-ABY-027 in tumors. Mice were treated with [Lu-177]Lu-ABY-027 or trastuzumab as monotherapies and a combination of these therapies. Mice treated with vehicle or unlabeled ABY-027 were used as controls. Targeted monotherapy using [Lu-177]Lu-ABY-027 improved the survival of mice and was more efficient than trastuzumab monotherapy. A combination of therapies utilizing [Lu-177]Lu-ABY-027 and trastuzumab improved the treatment outcome in comparison with monotherapies using these agents. In conclusion, [Lu-177]Lu-ABY-027 alone or in combination with trastuzumab could be a new potential agent for the treatment of HER2-expressing tumors.
  •  
6.
  • Yin, Wen, 1993-, et al. (författare)
  • The Influence of Domain Permutations of an Albumin-Binding Domain-Fused HER2-Targeting Affibody-Based Drug Conjugate on Tumor Cell Proliferation and Therapy Efficacy
  • 2021
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 13:11, s. 1974-1974
  • Tidskriftsartikel (refereegranskat)abstract
    • Human epidermal growth factor receptor 2 (HER2) is a clinically validated target for breast cancer therapy. Previously, a drug-fused HER2-targeting affinity protein construct successfully extended the survival of mice bearing HER2-expressing xenografts. The aim of this study was to evaluate the influence of the number and positioning of the protein domains in the drug conjugate. Seven HER2-targeting affibody-based constructs, including one or two affibody molecules (Z) with or without an albumin-binding domain (ABD), namely Z, Z-ABD, ABD-Z, Z-Z, Z-Z-ABD, Z-ABD-Z, and ABD-Z-Z, were evaluated on their effects on cell growth, in vivo targeting, and biodistribution. The biodistribution study demonstrated that the monomeric constructs had longer blood retention and lower hepatic uptake than the dimeric ones. A dimeric construct, specifically ABD-Z-Z, could stimulate the proliferation of HER2 expressing SKOV-3 cells in vitro and the growth of tumors in vivo, whereas the monomeric construct Z-ABD could not. These two constructs demonstrated a therapeutic effect when coupled to mcDM1; however, the effect was more pronounced for the non-stimulating Z-ABD. The median survival of the mice treated with Z-ABD-mcDM1 was 63 days compared to the 37 days for those treated with ABD-Z-Z-mcDM1 or for the control animals. Domain permutation of an ABD-fused HER2-targeting affibody-based drug conjugate significantly influences tumor cell proliferation and therapy efficacy. The monomeric conjugate Z-ABD is the most promising format for targeted delivery of the cytotoxic drug DM1.
  •  
7.
  • Rinne, Sara Sophie (författare)
  • Affibody-Based Molecular Imaging and Targeted Therapy of HER3-Expressing Cancer
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The human epidermal growth factor receptor type 3 (HER3) is overexpressed in different types of cancer and is a known contributor to disease progression and resistance to cancer therapy. This thesis is based on five original articles, which aimed to improve the diagnostic and therapeutic potential of affibody-based agents for management of HER3-expressing cancers. Papers I-III focused on the development and optimization of radiolabeled affibody molecules for radionuclide molecular imaging of HER3 expression. In particular, they investigated the influence of different radiometal/chelator complexes and hydrophilicity on the biodistribution and imaging properties of the HER3-targeting affibody molecule ZHER3. Paper IV compared the optimized ZHER3-based radiotracer with antibody and antibody-fragment based radiotracers for PET imaging of HER3 expression. In Paper V, a preclinical therapy study was conducted to investigate the efficacy of different monomeric and dimeric HER3-targeting affibody constructs for treatment of HER3-expressing cancer.It was shown that by optimizing the radiometal/chelator complex and incorporation of a hydrophilic (HE)3-tag the imaging properties of ZHER3-based radiotracers could be improved (Papers I-III). Generally, replacing a positively charged radiometal/chelator complex with a neutral or negatively charged complex improved the image contrast by reducing the normal organ uptake, especially in the liver. Further, it was demonstrated that the optimized affibody-based tracer [68Ga]Ga-(HE)3-ZHER3-NODAGA could provide higher contrast PET images of HER3 expression than the 89Zr-labeled antibody seribantumab and a seribantumab-derived F(ab’)2 fragment (Paper IV). The therapy study showed that the arrangement of the molecular building blocks affected the therapeutic efficacy of ZHER3-based affibody constructs. The monomeric and dimeric ABD-conjugated affibody constructs 3A and 3A3 showed the best therapeutic efficacy among the tested constructs and were able to delay tumor growth and prolong survival with the same efficacy as the therapeutic HER3-targeting antibody seribantumab (Paper V).In conclusion, the results described in this thesis show that HER3-targeting affibody-based agents could be well-suited for molecular imaging of HER3 expression and HER3-targeted therapy in cancer. Careful optimization of the molecular design could improve the imaging properties and therapeutic efficacy of HER3-targeting affibody molecules. Most importantly, it was demonstrated that HER3-targeting affibody molecules could provide superior diagnostic images and similar therapeutic effect than more traditional approaches for management of HER3-expressing cancer.
  •  
8.
  • Honarvar, Hadis, et al. (författare)
  • Position for site-specific attachment of a DOTA chelator to synthetic affibody molecules has a different influence on the targeting properties of 68Ga-Compared to 111in-labeled conjugates
  • 2014
  • Ingår i: Molecular Imaging. - : SAGE Publications. - 1535-3508 .- 1536-0121. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules, small (7 kDa) scaffold proteins, are a promising class of probes for radionuclide molecular imaging. Radiolabeling of Affibody molecules with the positron-emitting nuclide 68Ga would permit the use of positron emission tomography (PET), providing better resolution, sensitivity, and quantification accuracy than single-photon emission computed tomography (SPECT). The synthetic anti-HER2 ZHER2:S1 Affibody molecule was conjugated with DOTA at the N-terminus, in the middle of helix 3, or at the Cterminus. The biodistribution of 68Ga-and 111In-labeled Affibody molecules was directly compared in NMRI nu/nu mice bearing SKOV3 xenografts. The position of the chelator strongly influenced the biodistribution of the tracers, and the influence was more pronounced for 68Ga-labeled Affibody molecules than for the 111In-labeled counterparts. The best 68Ga-labeled variant was 68Ga-[DOTA-A1]-ZHER2:S1, which provided a tumor uptake of 13 ± 1 %ID/g and a tumor to blood ratio of 39 ± 12 at 2 hours after injection. 111In-[DOTA-A1]-ZHER2:S1 and 111In-[DOTA-K58]-ZHER2:S1 were equally good at this time point, providing a tumor uptake of 15 to 16 %ID/g and a tumor to blood ratio in the range of 60 to 80. In conclusion, the selection of the best position for a chelator in Affibody molecules can be used for optimization of their imaging properties. This may be important for the development of Affibody-based and other protein-based imaging probes.
  •  
9.
  • Oroujeni, Maryam, PhD, 1982-, et al. (författare)
  • Evaluation of affinity matured Affibody molecules for imaging of the immune checkpoint protein B7-H3
  • 2023
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 124-125
  • Tidskriftsartikel (refereegranskat)abstract
    • B7-H3 (CD276), an immune checkpoint protein, is a promising molecular target for immune therapy of malignant tumours. Sufficient B7-H3 expression level is a precondition for successful therapy. Radionuclide molecular imaging is a powerful technique for visualization of expression levels of molecular targets in vivo. Use of small radiolabelled targeting proteins would enable high-contrast radionuclide imaging of molecular targets if adequate binding affinity and specificity of an imaging probe could be provided. Affibody molecules, small engineered affinity proteins based on a non-immunoglobulin scaffold, have demonstrated an appreciable potential in radionuclide imaging. Proof-of principle of radionuclide visualization of expression levels of B7-H3 in vivo was demonstrated using the [99mTc]Tc-AC12-GGGC Affibody molecule. We performed an affinity maturation of AC12, enabling selection of clones with higher affinity. Three most promising clones were expressed with a -GGGC (triglycine-cysteine) chelating sequence at the C-terminus and labelled with technetium-99m (99mTc). 99mTc-labelled conjugates bound to B7-H3-expressing cells specifically in vitro and in vivo. Biodistribution in mice bearing B7-H3-expressing SKOV-3 xenografts demonstrated improved imaging properties of the new conjugates compared with the parental variant [99mTc]Tc-AC12-GGGC. [99mTc]Tc-SYNT-179 provided the strongest improvement of tumour-to-organ ratios. Thus, affinity maturation of B7-H3 Affibody molecules could improve biodistribution and targeting properties for imaging of B7-H3-expressing tumours.
  •  
10.
  • Almqvist, Ylva, et al. (författare)
  • In vitro characterization of 211 At-labeled antibody A33 : a potential therapeutic agent against metastatic colorectal carcinoma
  • 2005
  • Ingår i: Cancer Biotherapy and Radiopharmaceuticals. - : Mary Ann Liebert Inc. - 1084-9785 .- 1557-8852. ; 20:5, s. 514-523
  • Tidskriftsartikel (refereegranskat)abstract
    • The humanized antibody A33 binds to the A33 antigen, expressed in 95% of primary and metastatic colorectal carcinomas. The restricted pattern of expression in normal tissue makes this antigen a possible target for radioimmunotherapy of colorectal micrometastases. In this study, the A33 antibody was labeled with the therapeutic nuclide 211At using N-succinimidyl para-(tri-methylstannyl)benzoate (SPMB). The in vitro characteristics of the 211At-benzoate-A33 conjugate (211At-A33) were investigated and found to be similar to those of 125I-benzoate-A33 (125I-A33) in different assays. Both conjugates bound with high affinity to SW1222 cells (Kd = 1.7 ± 0.2 nM, and 1.8 ± 0.1 nM for 211At-A33 and 125I-A33, respectively), and both showed good intracellular retention (70% of the radioactivity was still cell associated after 20 hours). The cytotoxic effect of 211At-A33 was also confirmed. After incubation with 211At-A33, SW1222 cells had a survival of approximately 0.3% when exposed to some 150 decays per cell (DPC). The cytotoxic effect was found to be dose-dependent, as cells exposed to only 56 DPC had a survival of approximately 5%. The 211At-A33 conjugate shows promise as a potential radioimmunotherapy agent for treatment of micrometastases originating from colorectal carcinoma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 176
Typ av publikation
tidskriftsartikel (161)
forskningsöversikt (7)
doktorsavhandling (4)
annan publikation (2)
bokkapitel (1)
recension (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (129)
övrigt vetenskapligt/konstnärligt (47)
Författare/redaktör
Orlova, Anna, 1960- (71)
Orlova, Anna (69)
Mitran, Bogdan (54)
Vorobyeva, Anzhelika (49)
Garousi, Javad (36)
visa fler...
Altai, Mohamed (34)
Löfblom, John (34)
Rinne, Sara S. (32)
Ståhl, Stefan (26)
Eriksson Karlström, ... (25)
Oroujeni, Maryam, Ph ... (23)
Sörensen, Jens (22)
Honarvar, Hadis (21)
Sandström, Mattias (18)
Schulga, Alexey (17)
Frejd, Fredrik Y. (16)
Abouzayed, Ayman (15)
Rosenström, Ulrika (15)
Andersson, Ken G. (15)
Westerlund, Kristina (14)
Rosestedt, Maria (14)
Chernov, Vladimir (13)
Varasteh, Zohreh (12)
Bragina, Olga (12)
Lubberink, Mark (10)
Perols, Anna (10)
Deyev, Sergey (10)
Feldwisch, Joachim (9)
Strand, Joanna (8)
Zelchan, Roman (8)
Gräslund, Torbjörn (8)
Lindman, Henrik (8)
Carlsson, Jörgen (8)
Selvaraju, Ram Kumar (7)
Leitao, Charles Dahl ... (7)
Hober, Sophia, Profe ... (6)
Rosik, Daniel (6)
Velikyan, Irina (6)
Bezverkhniaia, Ekate ... (6)
Lundqvist, Hans (5)
Bodenko, Vitalina (5)
Larhed, Mats (5)
Borin, Jesper (5)
Hober, Sophia (5)
Wållberg, Helena (5)
Wennborg, Anders (5)
Loftenius, Annika (5)
Buijs, Jos (5)
Malmberg, Jennie (5)
visa färre...
Lärosäte
Uppsala universitet (170)
Kungliga Tekniska Högskolan (94)
Lunds universitet (5)
Karolinska Institutet (2)
Göteborgs universitet (1)
Språk
Engelska (176)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (176)
Naturvetenskap (16)
Teknik (8)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy