SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinsk bioteknologi Annan medicinsk bioteknologi) ;lar1:(ltu)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinsk bioteknologi Annan medicinsk bioteknologi) > Luleå tekniska universitet

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alrifaiy, Ahmed, et al. (författare)
  • A lab-on-a-chip for hypoxic patch clamp measurements combined with optical tweezers and spectroscopy : first investigations of single biological cells
  • 2015
  • Ingår i: Biomedical engineering online. - : Springer Science and Business Media LLC. - 1475-925X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The response and the reaction of the brain system to hypoxia is a vital research subject that requires special instrumentation. With this research subject in focus, a new multifunctional lab-on-a-chip (LOC) system with control over the oxygen content for studies on biological cells was developed. The chip was designed to incorporate the patch clamp technique, optical tweezers and absorption spectroscopy. The performance of the LOC was tested by a series of experiments. The oxygen content within the channels of the LOC was monitored by an oxygen sensor and verified by simultaneously studying the oxygenation state of chicken red blood cells (RBCs) with absorption spectra. The chicken RBCs were manipulated optically and steered in three dimensions towards a patch-clamp micropipette in a closed microfluidic channel. The oxygen level within the channels could be changed from a normoxic value of 18% O 2 to an anoxic value of 0.0-0.5% O 2. A time series of 3 experiments were performed, showing that the spectral transfer from the oxygenated to the deoxygenated state occurred after about 227 ± 1 s and a fully developed deoxygenated spectrum was observed after 298 ± 1 s, a mean value of 3 experiments. The tightness of the chamber to oxygen diffusion was verified by stopping the flow into the channel system while continuously recording absorption spectra showing an unchanged deoxygenated state during 5400 ± 2 s. A transfer of the oxygenated absorption spectra was achieved after 426 ± 1 s when exposing the cell to normoxic buffer. This showed the long time viability of the investigated cells. Successful patching and sealing were established on a trapped RBC and the whole-cell access (Ra) and membrane (Rm) resistances were measured to be 5.033 ± 0.412 M Ω and 889.7 ± 1.74 M Ω respectively.
  •  
2.
  • Alrifaiy, Ahmed, et al. (författare)
  • How to integrate a micropipette into a closed microfluidic system : absorption spectra of an optically trapped erythrocyte
  • 2011
  • Ingår i: Biomedical Optics Express. - 2156-7085. ; 2:8, s. 2299-2306
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new concept of integrating a micropipette within a closed microfluidic system equipped with optical tweezers and a UV-Vis spectrometer. A single red blood cell (RBC) was optically trapped and steered in three dimensions towards a micropipette that was integrated in the microfluidic system. Different oxygenation states of the RBC, triggered by altering the oxygen content in the microchannels through a pump system, were optically monitored by a UV-Vis spectrometer. The built setup is aimed to act as a multifunctional system where the biochemical content and the electrophysiological reaction of a single cell can be monitored simultaneously. The system can be used for other applications like single cell sorting, in vitro fertilization or electrophysiological experiments with precise environmental control of the gas-, and chemical content.
  •  
3.
  • Shaner, Sebastian, et al. (författare)
  • Bioelectronic microfluidic wound healing: a platform for investigating direct current stimulation of injured cell collectives
  • 2023
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry. - 1473-0197 .- 1473-0189. ; 23:6, s. 1531-1546
  • Tidskriftsartikel (refereegranskat)abstract
    • Upon cutaneous injury, the human body naturally forms an electric field (EF) that acts as a guidance cue for relevant cellular and tissue repair and reorganization. However, the direct current (DC) flow imparted by this EF can be impacted by a variety of diseases. This work delves into the impact of DC stimulation on both healthy and diabetic in vitro wound healing models of human keratinocytes, the most prevalent cell type of the skin. The culmination of non-metal electrode materials and prudent microfluidic design allowed us to create a compact bioelectronic platform to study the effects of different sustained (12 hours galvanostatic DC) EF configurations on wound closure dynamics. Specifically, we compared if electrotactically closing a wound's gap from one wound edge (i.e., uni-directional EF) is as effective as compared to alternatingly polarizing both the wound's edges (i.e., pseudo-converging EF) as both of these spatial stimulation strategies are fundamental to the eventual translational electrode design and strategy. We found that uni-directional electric guidance cues were superior in group keratinocyte healing dynamics by enhancing the wound closure rate nearly three-fold for both healthy and diabetic-like keratinocyte collectives, compared to their non-stimulated respective controls. The motility-inhibited and diabetic-like keratinocytes regained wound closure rates with uni-directional electrical stimulation (increase from 1.0 to 2.8% h−1) comparable to their healthy non-stimulated keratinocyte counterparts (3.5% h−1). Our results bring hope that electrical stimulation delivered in a controlled manner can be a viable pathway to accelerate wound repair, and also by providing a baseline for other researchers trying to find an optimal electrode blueprint for in vivo DC stimulation.
  •  
4.
  • Lu, Han, et al. (författare)
  • A microfluidic perspective on conventional in vitro transcranial direct current stimulation methods
  • 2023
  • Ingår i: Journal of Neuroscience Methods. - : Elsevier B.V.. - 0165-0270 .- 1872-678X. ; 385
  • Forskningsöversikt (refereegranskat)abstract
    • Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method to treat neurological and psychiatric diseases. However, its underlying neural mechanisms warrant further investigation. Indeed, dose–response interrelations are poorly understood. Placing explanted brain tissue, mostly from mice or rats, into a uniform direct current electric field (dcEF) is a well-established in vitro system to elucidate the neural mechanism of tDCS. Nevertheless, we will show that generating a defined, uniform, and constant dcEF throughout a brain slice is challenging. This article critically reviews the methods used to generate and calibrate a uniform dcEF. We use finite element analysis (FEA) to evaluate the widely used parallel electrode configuration and show that it may not reliably generate uniform dcEF within a brain slice inside an open interface or submerged chamber. Moreover, equivalent circuit analysis and measurements inside a testing chamber suggest that calibrating the dcEF intensity with two recording electrodes can inaccurately capture the true EF magnitude in the targeted tissue when specific criteria are not met. Finally, we outline why microfluidic chambers are an effective and calibration-free approach of generating spatiotemporally uniform dcEF for DCS in vitro studies, facilitating accurate and fine-scale dcEF adjustments. We are convinced that improving the precision and addressing the limitations of current experimental platforms will substantially improve the reproducibility of in vitro experimental results. A better mechanistic understanding of dose–response relations will ultimately facilitate more effective non-invasive stimulation therapies in patients.
  •  
5.
  • Shaner, Sebastian, et al. (författare)
  • Brain stimulation-on-a-chip: a neuromodulation platform for brain slices
  • 2023
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry. - 1473-0197 .- 1473-0189. ; 23:23, s. 4967-4985
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrical stimulation of ex vivo brain tissue slices has been a method used to understand mechanisms imparted by transcranial direct current stimulation (tDCS), but there are significant direct current electric field (dcEF) dosage and electrochemical by-product concerns in conventional experimental setups that may impact translational findings. Therefore, we developed an on-chip platform with fluidic, electrochemical, and magnetically-induced spatial control. Fluidically, the chamber geometrically confines precise dcEF delivery to the enclosed brain slice and allows for tissue recovery in order to monitor post-stimulation effects. Electrochemically, conducting hydrogel electrodes mitigate stimulation-induced faradaic reactions typical of commonly-used metal electrodes. Magnetically, we applied ferromagnetic substrates beneath the tissue and used an external permanent magnet to enable in situ rotational control in relation to the dcEF. By combining the microfluidic chamber with live-cell calcium imaging and electrophysiological recordings, we showcased the potential to study the acute and lasting effects of dcEFs with the potential of providing multi-session stimulation. This on-chip bioelectronic platform presents a modernized yet simple solution to electrically stimulate explanted tissue by offering more environmental control to users, which unlocks new opportunities to conduct thorough brain stimulation mechanistic investigations.
  •  
6.
  • Lindahl, Olof A, et al. (författare)
  • Biomedical engineering research improves the health care industry
  • 2014
  • Ingår i: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013. - Cham : Springer. - 9783319008455 - 9783319008462 ; , s. 1124-1126
  • Konferensbidrag (refereegranskat)abstract
    • The health care industry is dependent on new innovations for its survival and expansion. Health care innovations are also important for improving patient care. Through activities at the centre for biomedical engineering and physics (CMTF) we have generated growth both in academia at the universities and in the industry in northern Sweden. Fruitful cooperation was generated between 26 research projects and about 15 established companies in the field of biomedical engineering. The established researcher-owned company for business development of the research results from the CMTF, CMTF Business Development Co Ltd, has so far launched three spin-off companies and has 10 new business leads to develop. The activities have also increased the interest for commercialization and entrepreneurship among the scientists in the centre. So far a total of nine spin-off companies have resulted from the CMTF-research since the year 2000 that has improved the health care market in northern Sweden. © Springer International Publishing Switzerland 2014.
  •  
7.
  • Rastogi, Simran, et al. (författare)
  • Osteogenic markers in peri‐implant crevicular fluid in immediate and delayed‐loaded dental implants: A randomized controlled trial
  • 2023
  • Ingår i: Clinical Implant Dentistry and Related Research. - : John Wiley & Sons. - 1523-0899 .- 1708-8208. ; 25:3, s. 540-548
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionThe study evaluates the levels of matrix metalloprotease-8 (MMP-8), and Cathepsin-K (CatK) in peri-implant crevicular fluid (PICF) among patients with immediate loaded (IL) and delayed-loaded (DL) implants at different time points to know the inflammation and osteogenic status.MethodsThe study population consisted of two groups (n = 25, each group) with a mean age of 28.7 ± 3.5 years, and PICF was collected. MMP-8 and CatK levels were quantified through ELISA.ResultsWe observed the concentrations of inflammatory markers (MMP-8 and CatK) at three time points in the IL and DL groups. The mean concentration of MMP-8 in the IL group was 9468 ± 1230 pg/mL, 5547 ± 1088 pg/mL, and 7248 ± 1396 pg/mL at 2 weeks, 3 months, and 12 months, respectively; while in the DL group was 10 816 ± 779.7 pg/mL, 9531 ± 1245 pg/mL, and 9132 ± 1265 pg/mL at 2 weeks, 3 and 12 months, respectively. The mean concentration of Cat-K in the IL group was observed at 422.1 ± 36.46 pg/mL, 242.9 ± 25.87 pg/mL, and 469 ± 75.38 pg/mL at 2 weeks, 3, and 12 months, whereas in the DL group was 654.6 ± 152.9 pg/mL, 314.7 ± 28.29 pg/mL, and 539.8 ± 115.1 pg/mL at 2 weeks, 3 months and 12 months, respectively.ConclusionIn this study, the levels of CatK and MMP-8 levels decline at 12 months in both groups, and the IL group shows lower values compared to the DL group; however, no significant changes were observed after analyses were adjusted for multiple comparisons (p > 0.025). Therefore, there is not much difference observed in the inflammation process between immediate and delayed loading. (Clinical trial identifier: CTRI/2017/09/009668).
  •  
8.
  • Alrifaiy, Ahmed, et al. (författare)
  • Hypoxia on a chip - a novel approach for patch-clamp studies in a microfluidic system with full oxygen control
  • 2012
  • Ingår i: World Congress on Medical Physics and Biomedical Engineering, May 26-31, 2012, Beijing, China. - Berlin : Encyclopedia of Global Archaeology/Springer Verlag. - 9783642293047 - 9783642293054 ; , s. 313-316
  • Konferensbidrag (refereegranskat)abstract
    • A new approach to perform patch-clamp experiments on living cells under controlled anoxic and normoxic conditions was developed and tested. To provide an optimal control over the oxygen content and the biochemical environment a patch-clamp recording micropipette was integrated within an oxygen tight poly-methyl methacrylate (PMMA) based microchip. The oxygen content within the microfluidic chamber surrounding patch-clamp micropipette was maintained at 0.5-1.5 % by a continuous flow of artificial extracellular solution purged with nitrogen. The nerve and glial cells acutely obtained from the male rat brain were trapped by the optical tweezers and steered towards the patch-clamp micropipette through the channels of the microchip in order to achieve a close contact between the pipette and the cellular membrane. The patch-clamp recordings revealed that optical tweezers did not affect the electrophysiological properties of the tested cells suggesting that optical trapping is a safe and non-traumatizing method to manipulate living cells in the microfluidic system. Thus, our approach of combining optical tweezers and a gas-tight microfluidic chamber may be applied in various electrophysiological investigations of single cells were optimal control of the experimental conditions and the sample in a closed environment are necessary.
  •  
9.
  • Anasontzis, George E, 1980, et al. (författare)
  • Constitutive homologous expression of phosphoglucomutase and transaldolase increases the metabolic flux of Fusarium oxysporum
  • 2014
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Fusarium oxysporum is among the few filamentous fungi that have been reported of being able to directly ferment biomass to ethanol in a consolidated bioprocess. Understanding its metabolic pathways and their limitations can provide some insights on the genetic modifications required to enhance its growth and subsequent fermentation capability. In this study, we investigated the hypothesis reported previously that phosphoglucomutase and transaldolase are metabolic bottlenecks in the glycolysis and pentose phosphate pathway of the F. oxysporum metabolism.Results: Both enzymes were homologously overexpressed in F. oxysporum F3 using the gpdA promoter of Aspergillus nidulans for constitutive expression. Transformants were screened for their phosphoglucomutase and transaldolase genes expression levels with northern blot. The selected transformant exhibited high mRNA levels for both genes, as well as higher specific activities of the corresponding enzymes, compared to the wild type. It also displayed more than 20 and 15% higher specific growth rate upon aerobic growth on glucose and xylose, respectively, as carbon sources and 30% higher biomass to xylose yield. The determination of the relative intracellular amino and non-amino organic acid concentrations at the end of growth on glucose revealed higher abundance of most determined metabolites between 1.5- and 3-times in the recombinant strain compared to the wild type. Lower abundance of the determined metabolites of the Krebs cycle and an 68-fold more glutamate were observed at the end of the cultivation, when xylose was used as carbon source.Conclusions: Homologous overexpression of phosphoglucomutase and transaldolase in F. oxysporum was shown to enhance the growth characteristics of the strain in both xylose and glucose in aerobic conditions. The intracellular metabolites profile indicated how the changes in the metabolome could have resulted in the observed growth characteristics. © 2014 Anasontzis et al.; licensee BioMed Central Ltd.
  •  
10.
  • Sjöblom, Magnus, et al. (författare)
  • Secretion and expression dynamics of a GFP-tagged mucin-type fusion protein in high cell density Pichia pastoris bioreactor cultivations
  • 2012
  • Ingår i: Advances in Bioscience and Biotechnology. - : Scientific Research Publishing, Inc.. - 2156-8456 .- 2156-8502. ; 3:3, s. 238-248
  • Tidskriftsartikel (refereegranskat)abstract
    • The methanol inducible alcohol oxidase 1 promoter and the Saccharomyces cerevisiae alpha-factor prepro secretion signal were used to drive expression and secretion of a mucin-type fusion protein by Pichia pastoris in 1 L scale bioreactors. The aim of the study was to understand how varying expression rates influenced the secretion dynamics of the fusion protein in terms of intracellular- and extracellular concentrations. Endoplasmic reticulum (ER) folding stress was assessed by the relative expression of the unfolded protein response controlled KAR2 gene. Three predefined methanol feeding models were applied to control the fusion protein synthesis rate. To track the fusion protein synthesis in a non-invasive manner and to follow its intracellular distribution, its C-terminal was linked to the green fluorescent protein. Under all conditions the fusion protein was found to partially accumulate intracellularly, where the major fraction was an insoluble, fluorescent full-sized protein. The high degree of glycosylation of the insoluble fusion protein indicated a secretory bottle-neck in the Golgi-system. This result was consistent with low ER folding stress as quantified by the relative expression of the KAR2 gene. Reduction of recombinant protein synthesis rate, by using lower feed rates of methanol, enhanced extracellular concentrations from 8 to 18 mg·L–1 and reduced the rate of intracellular accumulation. This clearly demonstrates the importance of tuning the synthesis rate with secretory bottle-necks to maintain secretion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
tidskriftsartikel (11)
konferensbidrag (3)
forskningsöversikt (2)
bokkapitel (2)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Ramser, Kerstin (5)
Alrifaiy, Ahmed (4)
Lindahl, Olof A. (4)
Asplund, Maria (3)
Shaner, Sebastian (3)
Farzi, Gholamali (2)
visa fler...
Das, Oisik (2)
Neisiany, Rasoul Esm ... (2)
Akhtar, Farid (2)
Lindahl, Olof (2)
Aminoroaya, Alireza (2)
Lu, Han (2)
Vlachos, Andreas (2)
Hedin, Niklas (1)
Bengtsson, Tore (1)
Sjögren, Göran (1)
Christakopoulos, Pau ... (1)
Sjöblom, Magnus (1)
Rova, Ulrika (1)
Holgersson, Jan (1)
Akinwekomi, Akeem Da ... (1)
Borg, Johan (1)
Bitaraf, Nazanin (1)
Druzin, Michael (1)
Anasontzis, George E ... (1)
Kourtoglou, E. (1)
Mamma, D. (1)
Villas-Bôas, S.G.R. (1)
Hatzinikolaou, D.G. (1)
Andersson, Britt M. (1)
Kumar, Saroj (1)
Iqbal, Muhammad Naee ... (1)
Robert-Nicoud, Ghisl ... (1)
Lundström, Ronnie (1)
Lindberg, Linda (1)
Jalkanen, Ville (1)
Sharma, Vaibhav (1)
Ciurans Oset, Marina ... (1)
Andersson, Britt M, ... (1)
Kou, Wen, 1979- (1)
Liu, Hongyuan (1)
Bharti, Prahalad Sin ... (1)
Rastogi, Simran (1)
Kou, Shaoquan (1)
Rani, Komal (1)
Leal, José (1)
Jedrusik, Nicole (1)
Savelyeva, Anna (1)
Matter, Lukas (1)
Otte, Elisabeth (1)
visa färre...
Lärosäte
Umeå universitet (8)
Chalmers tekniska högskola (5)
Göteborgs universitet (2)
Stockholms universitet (1)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (18)
Teknik (16)
Naturvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy