SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinsk bioteknologi Annan medicinsk bioteknologi) ;mspu:(doctoralthesis)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinsk bioteknologi Annan medicinsk bioteknologi) > Doktorsavhandling

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jing, Yujia, 1985 (författare)
  • Hyperthermia-responsive liposomal systems
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract Sophisticated liposomal systems are emerging at an increasing rate to meet the demands for multifunctional drug carriers in chemotherapies in combined with hyperthermia. For example, liposomal drug carriers for temperature-controlled drug release under hyperthermic conditions have recently been tested in clinical trials. More advanced designs of liposomes are expected to release encapsulated contents and activate hidden surface-functions in response to heat stimulus. Towards this aim, the present thesis is focused on formulating asymmetric lipid systems that can preserve functional moieties, and reactivate the targeted function as well as release the encapsulated compounds upon local heating. The design of the asymmetric liposomal systems utilizes the heat-activated transmembrane lipid diffusion during gel to liquid-crystalline phase transitions of the lipid membranes.Rational design of advanced liposomal drug-delivery systems will require understanding of the physicochemical properties of lipid membranes under, e.g., hyperthermic conditions. Here, supported lipid membranes on planar solid surfaces were used for model studies of lipid composition yielding a gel to liquid crystalline phase-transition temperature in the range 40 – 45 °C. It was found that the liposome-to-membrane formation process is not only size-dependent but also governed by temperature. Two methods of preparing supported asymmetric lipid membranes were investigated. As a proof-of-concept, the upper leaflets were either replaced or chemically transformed by enzymatic hydrolysis. The processes were monitored using surface sensitive techniques such as quartz crystal microbalance with dissipation (QCM-D) and dual polarization interferometry (DPI). The asymmetric structures were stable at a room temperature, while lipid flip-flop was induced upon increasing of the temperature. Transmembrane lipid exchange in the asymmetric structure under hyperthermic conditions was demonstrated by detecting, through streptavidin binding, biotinylated lipids appearing at the top leaflet which were first located in the lower leaflet. The protocols developed for the supported lipid systems were adapted for the preparation of asymmetric liposomes. Biotinylated asymmetric liposomes were used as a model system to demonstrate the principle of heat-activated targeting of asymmetric liposomes to streptavidin-coated surfaces. More biologically relevant interaction was utilized to replace the biotin-streptavidin function, where asymmetric cationic liposomes were binding to anionic supported membrane immobilized surfaces upon heating. The described strategies for assembly of asymmetric supported membranes provide a guide to the development of multifunctional drug carriers. The protocols used in experiments with supported membranes were readily adapted to the preparation of asymmetric liposomes. The ongoing study tests the asymmetric liposomes in vitro, which is designed to demonstrate hyperthermia treatment can enhance accumulation of liposomes in FaDu cells, and at the same time activate release of the encapsulated components. The results of in vitro tests can be used to analyze the feasibility of utilizing the asymmetric liposomes as a platform in vivo to explore further improvement in their functions upon microwave hyperthermia.
  •  
2.
  • Bondesson, Johan, 1991 (författare)
  • Geometric Modeling of Thoracic Aortic Surface Morphology - Implications for Pathophysiology and Clinical Interventions
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Vascular disease risk factors such as hypertension, hyperlipidemia and old age are all results of modern-day lifestyle, and these diseases are getting more and more common. One treatment option for vascular diseases such as aneurysms and dissections is endovascular aortic repair introduced in the early 1990s. This treatment uses tubular fabric covered metallic structures (endografts) that are implanted using a minimally invasive approach and placed to serve as an articial vessel in a damaged portion of the vasculature. To ensure that the interventions are successful, the endograft must be placed in the correct location, and designed to sustain the hostile biological, chemical, and mechanical conditions in the body for many years. This is an interaction that goes both ways, and keeping in mind that the endograft is a foreign object placed in the sensitive vascular system, it is also important that it does not disrupt the native conditions more than necessary. This thesis presents a segmentation and quantication methodology to accurately describe the complex morphology and motion of diseased blood vessels in vivo through a natural and intuitive description of their luminal surfaces. After methodology validation, a series of important clinical applications are performed, all based on non-invasive imaging. Firstly, it is shown that explicit surface curvature quantication is necessary when compared to relying solely on centerline curvature and estimation methods. Secondly, it is shown that endograft malapposition severity can be predicted from preoperative geometric analysis of thoracic aortic surfaces. Thirdly, a multiaxial dynamics analysis of cardiac induced thoracic aortic surface motion shows how thoracic endovascular aortic repair affects the deformations of the dierent portions of the thoracic aorta. Fourthly, the helical propagation pattern of type B aortic dissection is determined, and two distinct modes of chirality are revealed, i.e., achiral and right-handed chiral groups. Finally, the effects of thoracic endovascular aortic repair on helical and cross-sectional morphology of type B dissections are investigated revealing how acuity and chirality affects the alteration due to intraluminal lining with endografts. Thus, the work presented in this thesis contributes by adding knowledge about pathology and pathophysiology through better geometric description of surface conditions of diseased thoracic aortas. This gives clinicians insights to use in their treatment planning and provides more nuanced boundary conditions for endograft manufacturers. Comprehensive knowledge about diseases, better treatment planning, and better devices are all crucial in order to improve the outcomes of performed interventions and ultimately the quality of life for the treated patients.
  •  
3.
  • Iseri, Emre (författare)
  • Microfluidic Compartmentalization for Smart Materials, Medical Diagnostics and Cell Therapy
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The organisation of fluids in small compartments is ubiquitous in nature, such as in the cellular composition of all life. This work explores several engineering avenues where microscale fluid compartmentalization can bring novel material properties or novel functionality in life sciences or medicine. Here, we introduce four unique compartmentalization methods: 1) 3D fluid self-organisation in microscaffolds (FLUID3EAMS), 2) 2D microcapillary arrays on a dipstick (Digital Dipstick), 3) a sliding microfluidic platform with cross-flow (Slip-X-Chip), and 4) compartmentalization by cutting of soft solid matter (Solidify & Cut). These methods were used in a wide range of applications. Within the area of smart materials, we applied FLUID3EAMS to synthesize materials with temperature-tuneable permeability and surface energy and to establish, in a well-controlled fashion, tissue-like materials in the form of 3D droplet interface bilayer networks. Solidify & Cut was used to form soft composites with a new type of magnetic behaviour, rotation-induced ferromagnetism, that allows easy reprogramming of the magnetization of magnetopolymers. Within the area of medical diagnostics, we applied Digital Dipstick to perform rapid digital bacterial culture in a dipstick format and obtained clinically relevant diagnostic results on samples from patients with a urinary tract infection. Furthermore, Slip-X-Chip enables particle concentration and washing as new functions in sliding microfluidic platforms, which significantly expands their potential application area. Finally, within the area of cell therapy, we explored the microencapsulation of high concentrations of therapeutic cells and presented a novel technique to fabricate core-shell microcapsules by exploiting the superior material properties of spider silk membranes. 
  •  
4.
  • Matar, Amal (författare)
  • Considering a Baby? Responsible Screening for the Future : Ethical and social implications for implementation and use of preconception expanded carrier screening in Sweden
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Preconception expanded carrier screening is a novel technology that involves the offer of a screening test for many recessive diseases (via an expanded screening panel) to prospective parents, with no priori risk. Test positive couples have a number of reproductive choices; prenatal diagnosis and aborting affected fetus, IVF and preimplantation genetic diagnosis, sperm or ovum donation or simply accept the risk. The test had been piloted in studies and can potentially be implemented in Europe. Therefore, it seemed pertinent to evaluate stakeholders’ perspectives on ethical and social implications of implementing and using preconception ECS in Sweden.Two main stakeholders were examined; healthcare professionals and health policymaking experts, via a mix of qualitative methods for data collection and data analysis. In Study I, we employed in-depth interviews to collect data and content analysis to analyze it. In Studies III and IV, expert interviews were used to gather data while thematic analysis was utilized to interpret it. Furthermore, in Study II, an ethical concept namely; reproductive autonomy, was critically discussed within a setting that expects a couple to make a conjoint reproductive decision about preconception ECS, while each partner still upholds his or her individual autonomy.The main findings of the empirical studies (Studies I, III and IV) echo to a great extent the prevailing ethical and social debates associated with the novel technology. Respondents expressed concerns with reproductive autonomy, medicalization, prioritization of health resources, discrimination and long term societal changes. Furthermore, respondents emphasized the importance to observe Swedish values, such as human dignity, equality and solidarity, when assessing a preconception ECS program. In addition, they described practicalities of implementation and political considerations that are pertinent to the Swedish context. Finally, some respondents recognized the advantages of reduced suffering and decrease in fetal anomalies and abortion as a consequence of preconception ECS.Study II, proposed a notion of couple autonomy, where certain demands if met, a couple’s reproductive decision can be accepted by healthcare staff as autonomous.The findings, in this thesis, steer towards non implementation of preconception ECS in its current status within the publicly-funded healthcare system in Sweden. This is because healthcare providers and experts were of the opinion that it would not solve a medical need, threaten Swedish values and use up resources extensively.
  •  
5.
  • Dahlsson Leitao, Charles (författare)
  • Affibody-mediated targeting of HER-family receptors for cancer imaging and therapy
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proteins are remarkable molecules with diverse and specialized functions playing essential roles in most biological processes. One such function is protecting us from diseases by the action of antibodies in our immune system that can recognize and mediate the destruction of invading pathogens by binding to foreign epitopes found on non-self proteins. The concept of utilizing specific protein-protein interactions to achieve a therapeutic effect has for several decades been a cornerstone for the development of cancer-directed treatments. While antibodies have formed a basis for the development of such drugs, other protein alternatives may be engineered to complement current antibody-based treatments, and may even prove to possess superior features.  This thesis focuses on the engineering of affibody molecules, a small alternative scaffold protein, for design and development of novel cancer-targeting therapeutic and diagnostic drugs. There are many different strategies that have been investigated for inhibiting cancer progression and tumour growth with perhaps one of the most straightforward involving disruption of dysregulated growth-promoting signalling pathways. Members of the human epidermal growth factor receptor (HER) family is prominently expressed in various cancer types and have been shown to be intricately involved in tumorigenesis. One of the members (HER3) often becomes upregulated in cancer and have been shown to mediate acquired resistance to targeted therapies by the mechanism of ligand-induced activation. We have designed five novel affibody-based HER3-targeting molecules able to prevent ligand-binding and consequently activation of HER3. We investigated the targeting properties and biodistribution profiles of these molecules in vivo and subsequently evaluated the anti-tumour efficacy for the most promising variants in direct comparison to a HER3-targeting antibody with a similar inhibitory mechanism. We observed a large influence of design on both the biodistribution properties and the in vivo efficacy of different affibody molecules. Moreover, we demonstrated that two of the affibody-formats were equally effective as the antibody in inhibiting tumour growth and prolonging survival of mice bearing HER3-positive xenografts. The effectiveness of cancer treatments depends on efficient diagnostic approaches that can reliably stratify patients based on these targetable biomarkers, which is possible using radionuclide molecular imaging. We have performed a direct comparison of the diagnostic potential for visualizing HER3-expressing tumours of affibody- and antibody-based imaging probes. We concluded that affibody molecules provide superior imaging quality with higher diagnostic potential and enable early visualization of HER3-expression in tumours.  Another member of the HER family that is of interest for cancer therapy is HER1 (or EGFR) but due to substantial expression in healthy tissues, targeted therapies may lead to severe side-effects. One possible solution to this is taking advantage of the distinct milieu of the tumour microenvironment to design EGFR-targeting drugs that become conditionally activated at the tumour site, but not in normal tissues, with the aim of drastically reducing systemic toxicity. We have generated an affibody molecule with anti-idiotypic binding specificity for a previously generated EGFR-binding affibody molecule, which we used to construct an affibody-based prodrug. We were able to show that, in a proof-of-concept format, this anti-idiotypic masking domain was able to block the binding to EGFR until removed by protease-mediated cleavage. We subsequently developed and characterized a more refined version of this prodrug, which we call a pro-affibody, and could show that activation by cancer-associated proteases confers binding to EGFR-expressing cancer cells and enables conditional cytotoxic payload delivery in vitro. The pro-affibody was further evaluated in vivo using tumour-bearing mice to investigate the feasibility for masked uptake in healthy tissues while retaining binding-activity in tumours. We observed a substantial reduction in EGFR-specific liver uptake compared to a control construct without a masking domain, and a strong indication of protease-mediated EGFR-binding in tumours.  In conclusion, the experimental work presented in this thesis provides a rationale for designing effective affibody-based cancer therapeutics and diagnostics with different targeting strategies and demonstrates the potential of such drugs from preclinical in vivo data.  
  •  
6.
  • Khorshidi, Mohammad Ali, 1981- (författare)
  • Live Single Cell Imaging and Analysis Using Microfluidic Devices
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Today many cell biological techniques study large cell populations where an average estimate of individual cells’ behavior is observed. On the other hand, single cell analysis is required for studying functional heterogeneities between cells within populations. This thesis presents work that combines the use of microfluidic devices, optical microscopy and automated image analysis to design various cell biological assays with single cell resolution including cell proliferation, clonal expansion, cell migration, cell-cell interaction and cell viability tracking. In fact, automated high throughput single cell techniques enable new studies in cell biology which are not possible with conventional techniques.In order to automatically track dynamic behavior of single cells, we developed a microwell based device as well as a droplet microfluidic platform. These high throughput microfluidic assays allow automated time-lapse imaging of encapsulated single cells in micro droplets or confined cells inside microwells. Algorithms for automatic quantification of cells in individual microwells and micro droplets are developed and used for the analysis of cell viability and clonal expansion. The automatic counting protocols include several image analysis steps, e.g. segmentation, feature extraction and classification. The automatic quantification results were evaluated by comparing with manual counting and revealed a high success rate. In combination these automatic cell counting protocols and our microfluidic platforms can provide statistical information to better understand behavior of cells at the individual level under various conditions or treatments in vitro exemplified by the analysis of function and regulation of immune cells. Thus, together these tools can be used for developing new cellular imaging assays with resolution at the single cell level.To automatically characterize transient migration behavior of natural killer (NK) cells compartmentalized in microwells, we developed a method for single cell tracking. Time-lapse imaging showed that the NK cells often exhibited periods of high motility, interrupted with periods of slow migration or complete arrest. These transient migration arrest periods (TMAPs) often overlapped with periods of conjugations between NK cells and target cells. Such conjugation periods sometimes led to cell-mediated killing of target cells. Analysis of cytotoxic response of NK cells revealed that a small sub-class of NK cells called serial killers was able to kill several target cells. In order to determine a starting time point for cell-cell interaction, a novel technique based on ultrasound was developed to aggregate NK and target cells into the center of the microwells. Therefore, these assays can be used to automatically and rapidly assess functional and migration behavior of cells to detect differences between health and disease or the influence of drugs.The work presented in this thesis gives good examples of how microfluidic devices combined with automated imaging and image analysis can be helpful to address cell biological questions where single cell resolution is necessary. 
  •  
7.
  • Sun, He (författare)
  • Antibiotic resistance in biogas processes
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Anaerobic digestion (AD) is a well-established technology that can play a key role in development of a sustainable society. In AD, organic wastes such as animal manure, food waste and crop residues are used as substrate and converted to biogas and digestate, which represent green energy and a biofertiliser. Due to intensive use of veterinary antibiotics, antibiotic residues, antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) enter the AD process via the substrates and end up in the digestate. Thus, digestate may represent a source of spread of antibiotic resistance. Antibiotic resistance is one of the greatest global public health challenges of our time and is predicted to cause around 300 million premature deaths by 2050, so countering its spread is critically important. However, research on the antibiotic resistance level in AD is still quite limited. This thesis contributed essential new knowledge by a) identifying ARB communities in digestates originating from food waste, crops and dairy manure; b) assessing antibiotic resistance in plant-based substrates; c) investigating phenotypic and genotypic resistance pattern and resistance transferability of isolated ARB; and d) comparing molecular and culture-dependent methods in evaluation of antibiotic resistance. Bacillus and closely-related genera such as Paenibacillus and Lysinibacillus were found to dominate the ARB community isolated from digestate, irrespective of substrate type. Most ARGs identified for these ARB were located on chromosomes, although several ARB strains had extra-chromosomal genomes. Only one was identified as a plasmid (pAMαl), which proved to be nontransferable in plasmid conjugation testing. Thus, the dominant ARB community from the digestates studied likely poses a limited risk of antibiotic resistance spread, although even plant-based substrates were found to contain variant antibiotic resistance components. Combined use of molecular and culturedependent methods was required to reveal the true antibiotic resistance situation in the AD process.
  •  
8.
  • Brechmann, Nils A. (författare)
  • Magnetic bead-based isolation of biological therapeutic modalities
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biopharmaceutical modalities, such as monoclonal antibodies or the less established cell therapies, are nowadays very important for the treatment of severe or incurable diseases. The manufacturing of such modalities is complex and costly, including the downstream processing, which is highly essential to ensure the safety and quality of the product.Currently, monoclonal antibody downstream processes are heavily based on column chromatography, such as Protein A affinity capture, and highly depended on clarified liquid. This leads to a step intensive process, which is not only costly but also generates significant reduction of yield for every additional step. The cell clarification, in particular, for high cell density cultures can be insufficient and result in clogging of the following step due to remaining particles in the liquid. Alternatively, the clarification can lead to a higher contamination of product variants and process related impurities, such as antibody aggregations and Host Cell Proteins (HCPs). On the other hand, for large scale commercialization of allogenic cell therapy approaches based on human induced pluripotent stem cell (hiPSC) cell lines, efficient and reliable methods to ensure safety and quality of the cell product are needed. The presence of undifferentiated cells in a cell product derived from hiPSCs represent a risk of tumour and teratoma formation in the patient. The removal of undifferentiated cells in the cell therapy product is critical, and reliable and scalable methods are needed to support off-the-shelf production.The work in this thesis aimed to develop an alternative downstream operational step based on magnetic beads linked with Protein A or Protein G and a magnetic separator system suitable for the purification of monoclonal antibodies or cell therapy products. Efforts were made to develop an efficient monoclonal antibody capture step, based on magnetic bead separation, directly applied on the harvest of monoclonal antibodies producing Chinese Hamster Ovary (CHO) cell cultures at different cell densities up to very high cell density (> 100 x 106 cells/mL) and scales ranging from small-scale to pilot-scale (up to 16 L). The system proved to be highly gentle towards the cell, minimizing aggregation and the release of HCPs (< 10 ppm) already complying with the regulatory constraint after only one downstream operational step. Furthermore, the magnetic bead-based separation was applied for the negative isolation of cell subpopulations based on unique surface marker expression. Here a flexible isolation system was developed based on Protein A or based on Protein G magnetic beads providing high variability towards the surface receptor recognizing antibody. The magnetic beads were substantially larger compared to a cell resulting in a binding process where a bead is being covered by several cells. The system was evaluated towards different surface receptors, i.e. HER2, TRA2-49 and SSEA-4. The magnetic beads showed to be non-toxic towards the delicate human mesenchymal stem cells and iPSCs. The system also provided excellent negative selection of HER2+ SKBR3 cells, taken as model, and TRA2- 49+/SSEA-4+ iPSCs from different heterogenous model cell populations.In conclusion, the present downstream strategies based on magnetic bead separation for the capture of monoclonal antibodies or for the negative selection of cell subpopulations showed great alternatives to resolve the challenges provided by intensified cultures in mAb manufacturing, and could provide a viable solution for cell therapy.
  •  
9.
  • Wisniewski, Andreas, 1991- (författare)
  • Bifunctional ADAPTs: Opportunity for serological Half-life extension and Targeted therapy
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Small engineered scaffold proteins (ESPs) gain more and more popularity as biological drugs, due to their specificity and applicability in diagnostics and therapy. Thanks to their high stability, low immunogenicity and low production cost, they present themselves as a promising alternative to the market-leading antibodies. However, their relatively small size poses the risk of fast blood clearance, a circumstance advantageous for imaging purposes but a disadvantage in a therapeutic setting.This thesis has focused on introducing bifunctionality, the ability of the same engineered scaffold protein to exert more than one function, by applying different engineering approaches. Therefore, a new combinatorial protein library based on ABD-derived affinity proteins (ADAPTs) was generated, originating from a bacterial albumin-binding domain. From this library, it was possible to achieve protein modules with the ability to simultaneously bind to its intended target as well as to human serum albumin (HSA), a feature that has been shown to increase the binder’s half-life in the body. Specific binding modules were achieved by performing phage display selections towards the targets Tumor necrosis factor alpha (TNF⍺) and Interleukin-17c (IL-17c), both proinflammatory cytokines involved in many different inflammatory diseases and therefore interesting targets for therapeutic applications. The selection output was analyzed through sequencing and promising candidates were cloned and produced in Escherichia coli (E. coli), followed by a detailed characterization of each candidate including target binding, stability and their oligomeric state using methods like Surface Plasmon Resonance (SPR), Circular Dichroism (CD) and Size Exclusion Chromatography (SEC). It was possible to generate binders that passed all characterization criteria, most importantly showing simultaneous bispecificity to either TNF⍺ or IL-17c in combination with albumin. Each binder was then examined for their usefulness as a real therapeutic by successfully evaluating its ability to block the interaction of the cytokine and its specific receptor in vitro. These newly developed protein binders, showing high affinity towards their targets as well as keeping their initial binding to HSA, present another possibility to combine the advantages of small engineered scaffold proteins with those of typical larger proteins, allowing for more convenient production in bacteria leading to lower production costs and making them ideal candidates for future therapeutics.Furthermore, a previously developed ADAPT targeting the human epidermal growth factor receptor 2 (HER2) was genetically fused to an improved Horseradish Peroxidase (HRP) variant, thereby combining the idea of tumor-targeted therapy through the ADAPT with the utilization of HRP to enzymatically catalyze the prodrug IAA into its active form. After proving these new fusion proteins have similar binding kinetics to the target, as well as comparable enzymatic activities, as their free counterpart, the cytotoxic effects were put to the test in vitro. Hereby, the variants showed to benefit immensely through the addition of an ADAPT by being selectively effective only on HER2-positive cells. The evident advantage of these fusion proteins and their competency to be functionally produced in E. coli as well as the possibility to avoid an additional step of conjugation or coupling of affinity proteins to cytotoxic payloads, makes this approach a promising alternative for current procedures and another reason why ESPs are on the rise.
  •  
10.
  • Bao, Jichen, 1988 (författare)
  • Engineering the Secretory Pathway for Recombinant Protein Secretion in Saccharomyces cerevisiae
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the past few decades there has been an increasing demand of biopharmaceutical proteins in the market. Several types of cell factories are applied to produce different pharmaceutical proteins. However, manufacturers prefer to use a few favorable biological platforms to undertake the production tasks with low cost, high productivity and proper post-translational modifications. The yeast Saccharomyces cerevisiae is one of these preferred cell factories as it has many advantages. There are several reports on improvement of recombinant protein production by S. cerevisiae through rational engineering of different stages of the protein secretion pathway. In the first story of this thesis, we engineered protein anterograde trafficking by over-expression of SEC16 to increase the secretory capacity of yeast. We performed bioreactor fermentation to further characterize the engineered strains, and we analysis the reactive oxygen species accumulation, endoplasmic reticulum exit sites, the amount of endoplasmic reticulum membranes of the strains, etc. In the second story, we engineered the retrograde trafficking by over-expression of GLO3 and GCS1 to further increase the secretory capacity of yeast based on the strain constructed in the first story. Physiological changes in the engineered strains were analyzed. We also performed additional experiments to investigate the changes in the amount of endoplasmic reticulum membranes and reactive oxygen species accumulation. In the third story, we performed a systems level analysis of the high α-amylase production strains, which were screened from UV mutation in the previous study. We identified common regulation patterns and hereby we could specify some general rules for efficient protein secretion. Last, we reported an efficient yeast secretion assay platform for biomedical and biotechnological applications. This platform is responsive to secretory disturbances from both chemicals and proteins and is potentially applicable to drug screening and the selection of cell engineering targets for protein production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25
Typ av publikation
Typ av innehåll
övrigt vetenskapligt/konstnärligt (25)
Författare/redaktör
Lundeberg, Joakim, P ... (2)
van der Wijngaart, W ... (2)
Hober, Sophia, Profe ... (1)
Khorshidi, Mohammad ... (1)
Ahlgren, Serina (1)
Pamme, Nicole, Profe ... (1)
visa fler...
Sun, He (1)
Sandell, Mikael (1)
Löfblom, John (1)
Jonsson, Stefan, Pro ... (1)
Carlsson, Magnus (1)
Ståhl, Stefan, Profe ... (1)
Martinez Avila, Hect ... (1)
Berglin, Lena (1)
Bao, Jichen, 1988 (1)
Bass, Tarek (1)
Ståhl, Stefan, Prof (1)
Furebring, Christina (1)
Hansson, Mats G, 195 ... (1)
Ström, Oskar (1)
Gasser, T. Christian ... (1)
Bondesson, Johan, 19 ... (1)
Brechmann, Nils A. (1)
Chotteau, Véronique, ... (1)
Titchener-Hooker, Ni ... (1)
Sandman, Lars, Profe ... (1)
Matar, Amal (1)
Stemmann, Meike (1)
Dahlsson Leitao, Cha ... (1)
Rader, Christoph, Pr ... (1)
Otto, Ernst, 1971 (1)
Zubair, Muhammad (1)
Wårdell, Karin, Prof ... (1)
Höglund, Anna T, 196 ... (1)
Andersson-Svahn, Hel ... (1)
Grytsan, Andrii, 198 ... (1)
Kroon, Martin, Profe ... (1)
van de Vosse, Frans ... (1)
Elf, Johan, Professo ... (1)
Hasmats, Johanna, 19 ... (1)
Daub, Carsten, Dr. (1)
Stemme, Göran, Profe ... (1)
Iseri, Emre (1)
Jansson, Anna, 1985 (1)
Jing, Yujia, 1985 (1)
Jönsson, Håkan, Doct ... (1)
Wählby, Carolina, As ... (1)
Latorre, Malcolm, 19 ... (1)
Salerud, Göran, Prof ... (1)
Hofmann, Ulrich, Pro ... (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (10)
Chalmers tekniska högskola (6)
Sveriges Lantbruksuniversitet (4)
Lunds universitet (2)
Uppsala universitet (1)
Linköpings universitet (1)
visa fler...
Högskolan i Borås (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (25)
Teknik (12)
Naturvetenskap (9)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy