SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska grundvetenskaper Medicinsk genetik) ;lar1:(his)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska grundvetenskaper Medicinsk genetik) > Högskolan i Skövde

  • Resultat 1-10 av 63
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chaudhari, Aditi, et al. (författare)
  • Hepatic deletion of p110α and p85α results in insulin resistance despite sustained IRS1-associated phosphatidylinositol kinase activity
  • 2017
  • Ingår i: F1000 Research. - : Faculty of 1000 Ltd.. - 2046-1402 .- 1759-796X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Class IA phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) is an integral mediator of insulin signaling. The p110 catalytic and p85 regulatory subunits of PI3K are the products of separate genes, and while they come together to make the active heterodimer, they have opposing roles in insulin signaling and action. Deletion of hepatic p110α results in an impaired insulin signal and severe insulin resistance, whereas deletion of hepatic p85α results in improved insulin sensitivity due to sustained levels of phosphatidylinositol (3,4,5)-trisphosphate. Here, we created mice with combined hepatic deletion of p110α and p85α (L-DKO) to study the impact on insulin signaling and whole body glucose homeostasis.Methods: Six-week old male flox control and L-DKO mice were studied over a period of 18 weeks, during which weight and glucose levels were monitored, and glucose tolerance tests, insulin tolerance test and pyruvate tolerance test were performed. Fasting insulin, insulin signaling mediators, PI3K activity and insulin receptor substrate (IRS)1-associated phosphatidylinositol kinase activity were examined at 10 weeks. Liver, muscle and white adipose tissue weight was recorded at 10 weeks and 25 weeks.Results: The L-DKO mice showed a blunted insulin signal downstream of PI3K, developed markedly impaired glucose tolerance, hyperinsulinemia and had decreased liver and adipose tissue weights. Surprisingly, however, these mice displayed normal hepatic glucose production, normal insulin tolerance, and intact IRS1-associated phosphatidylinositol kinase activity without compensatory upregulated signaling of other classes of PI3K.Conclusions: The data demonstrate an unexpectedly overall mild metabolic phenotype of the L-DKO mice, suggesting that lipid kinases other than PI3Ks might partially compensate for the loss of p110α/p85α by signaling through other nodes than Akt/Protein Kinase B.
  •  
2.
  • Deland, Lily, et al. (författare)
  • Novel TPR::ROS1 Fusion Gene Activates MAPK, PI3K and JAK/STAT Signaling in an Infant-type Pediatric Glioma.
  • 2022
  • Ingår i: Cancer genomics & proteomics. - : Anticancer Research USA Inc.. - 1109-6535 .- 1790-6245. ; 19:6, s. 711-726
  • Tidskriftsartikel (refereegranskat)abstract
    • Although fusion genes involving the proto-oncogene receptor tyrosine kinase ROS1 are rare in pediatric glioma, targeted therapies with small inhibitors are increasingly being approved for histology-agnostic fusion-positive solid tumors.Here, we present a 16-month-old boy, with a brain tumor in the third ventricle. The patient underwent complete resection but relapsed two years after diagnosis and underwent a second operation. The tumor was initially classified as a low-grade glioma (WHO grade 2); however, methylation profiling suggested the newly WHO-recognized type: infant-type hemispheric glioma. To further refine the molecular background, and search for druggable targets, whole genome (WGS) and whole transcriptome (RNA-Seq) sequencing was performed.Concomitant WGS and RNA-Seq analysis revealed several segmental gains and losses resulting in complex structural rearrangements and fusion genes. Among the top-candidates was a novel TPR::ROS1 fusion, for which only the 3' end of ROS1 was expressed in tumor tissue, indicating that wild type ROS1 is not normally expressed in the tissue of origin. Functional analysis by Western blot on protein lysates from transiently transfected HEK293 cells showed the TPR::ROS1 fusion gene to activate the MAPK-, PI3K- and JAK/STAT- pathways through increased phosphorylation of ERK, AKT, STAT and S6. The downstream pathway activation was also confirmed by immunohistochemistry on tumor tissue slides from the patient.We have mapped the activated oncogenic pathways of a novel ROS1-fusion gene and broadened the knowledge of the newly recognized infant-type glioma subtype. The finding facilitates suitable targeted therapies for the patient in case of relapse.
  •  
3.
  • Gustafson, Deborah R. (författare)
  • Adipose Tissue Complexities in Dyslipidemias
  • 2019
  • Ingår i: Dyslipidemia. - London : IntechOpen. - 9781839680045 - 9781839680038 - 9781839680052 ; , s. 1-22
  • Bokkapitel (refereegranskat)abstract
    • Adipose tissue is the largest organ in the human body and, in excess, contributes to dyslipidemias and the dysregulation of other vascular and metabolic processes. Adipose tissue is heterogeneous, comprised of several cell types based on morphology, cellular age, and endocrine and paracrine function. Adipose tissue depots are also regional, primarily due to sex differences and genetic variation. Adipose tissue is also characterized as subcutaneous vs. visceral. In addition, fatty deposits exist outside of adipose tissue, such as those surrounding the heart, or as infiltration of skeletal muscle. This review focuses on adipose tissue and its contribution to dyslipidemias. Dyslipidemias are defined as circulating blood lipid levels that are too high or altered. Lipids include both traditional and nontraditional species. Leaving aside traditional definitions, adipose tissue contributes to dyslipidemias in a myriad of ways. To address a small portion of this topic, we reviewed (a) adipose tissue location and cell types, (b) body composition, (c) endocrine adipose, (d) the fat-brain axis, and (e) genetic susceptibility. The influence of these complex aspects of adipose tissue on dyslipidemias and human health, illustrating that, once again, that adipose tissue is a quintessential, multifunctional tissue of the human body, will be summarized.
  •  
4.
  • Chaudhari, Aditi, et al. (författare)
  • p110α hot spot mutations E545K and H1047R exert metabolic reprogramming independently of p110α kinase activity
  • 2015
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 35:19, s. 3258-3273
  • Tidskriftsartikel (refereegranskat)abstract
    • The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity.
  •  
5.
  • Jurcevic, Sanja, 1971-, et al. (författare)
  • Bioinformatics analysis of miRNAs in the neuroblastoma 11q-deleted region reveals a role of miR-548l in both 11q-deleted and MYCN amplified tumour cells
  • 2022
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma is a childhood tumour that is responsible for approximately 15% of all childhood cancer deaths. Neuroblastoma tumours with amplification of the oncogene MYCN are aggressive, however, another aggressive subgroup without MYCN amplification also exists; rather, they have a deleted region at chromosome arm 11q. Twenty-six miRNAs are located within the breakpoint region of chromosome 11q and have been checked for a possible involvement in development of neuroblastoma due to the genomic alteration. Target genes of these miRNAs are involved in pathways associated with cancer, including proliferation, apoptosis and DNA repair. We could show that miR-548l found within the 11q region is downregulated in neuroblastoma cell lines with 11q deletion or MYCN amplification. In addition, we showed that the restoration of miR-548l level in a neuroblastoma cell line led to a decreased proliferation of these cells as well as a decrease in the percentage of cells in the S phase. We also found that miR-548l overexpression suppressed cell viability and promoted apoptosis, while miR-548l knockdown promoted cell viability and inhibited apoptosis in neuroblastoma cells. Our results indicate that 11q-deleted neuroblastoma and MYCN amplified neuroblastoma coalesce by downregulating miR-548l.
  •  
6.
  • Fransson, Susanne, 1975, et al. (författare)
  • High level of p37δ-mRNA relative to p110δ-mRNA in neuroblastoma tumors correlates with poor patient survival
  • 2013
  • Ingår i: Medical Oncology. - : Springer Science+Business Media B.V.. - 1357-0560 .- 1559-131X. ; 30:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Alterations in the PI3K/Akt pathway, a pathway that promotes proliferation and oncogenic transformation, are common in various cancers. In neuroblastoma, activation of Akt is correlated with aggressive disease although mutations in genes of this pathway are rare. Previous findings include a few mutations in PIK3CD, the gene encoding PI3K catalytic subunit delta, p110delta. We recently reported that an alternatively spliced form of p110delta, called p37delta, had cell proliferative properties and was over-expressed in ovarian and colorectal tumors. Here, we investigated p37delta in neuroblastoma primary tumors of different stages using qPCR (TaqMan) for gene expression analysis (46 samples) and Western blot for protein analysis (22 samples). Elevated levels of both p37delta-mRNA and p110delta-mRNA were detected in metastasizing neuroblastoma tumors compared to normal adrenal gland (P<0.05), and higher expression of p37delta-mRNA relative to p110delta-mRNA in neuroblastoma non-survivor patients compared to survivors (P<0.01). p37delta-Protein levels but not p110delta levels correlated with increased pAKT(T308) and pERK levels. The p37delta-mRNA levels did not correlate with the protein levels, indicating major regulation at the translational/protein level. Deregulation of signaling pathways is a hallmark of cancer development. Here, we show that p37delta, a kinase-dead isoform of the PI3K catalytic subunit p110delta, is over-expressed in neuroblastoma tumors, and that it correlates with the activation of both PI3K/Akt- and RAS-signaling pathways.
  •  
7.
  • Nilipour, Yalda, et al. (författare)
  • Ryanodine receptor type 3 (RYR3) as a novel gene associated with a myopathy with nemaline bodies
  • 2018
  • Ingår i: European Journal of Neurology. - : Blackwell Publishing. - 1351-5101 .- 1468-1331. ; 25:6, s. 841-847
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Nemaline myopathy has been associated with mutations in twelve genes to date. However, for some patients diagnosed with nemaline myopathy, definitive mutations are not identified in the known genes, suggesting there are other genes involved. This study describes compound heterozygosity for rare variants in RYR3 in one such patient.Results: Clinical examination of the patient at 22 years of age revealed a long-narrow face, high arched palate and bilateral facial weakness. She had proximal weakness in all four limbs, mild scapular winging but no scoliosis. Muscle biopsy revealed wide variation in fibre size with type 1 fibre predominance and atrophy. Abundant nemaline bodies were located in perinuclear areas, subsarcolemmal and within the cytoplasm. No likely pathogenic mutations in known nemaline myopathy genes were identified. Copy number variation in known nemaline myopathy genes was excluded by nemaline myopathy targeted array-CGH. Next generation sequencing revealed compound heterozygous missense variants in the ryanodine receptor type 3 gene (RYR3).  RYR3 transcripts are expressed in human fetal and adult skeletal muscle as well as in human brain or cauda equina samples. Immunofluorescence of human skeletal muscle revealed a "single-row" appearance of RYR3, interspaced between the "double-rows" of RYR1 at each A-I junction.Conclusion: The results suggest that variants in RYR3 may cause a recessive muscle disease with pathological features including nemaline bodies. We characterize the expression pattern of RYR3 in human skeletal muscle and brain and the subcellular localization of RYR1 and RYR3 in human skeletal muscle.
  •  
8.
  • Rosenhahn, Erik, et al. (författare)
  • Bi-allelic loss-of-function variants in PPFIBP1 cause a neurodevelopmental disorder with microcephaly, epilepsy, and periventricular calcifications
  • 2022
  • Ingår i: American Journal of Human Genetics. - : Cell Press. - 0002-9297 .- 1537-6605. ; 109:8, s. 1421-1435
  • Tidskriftsartikel (refereegranskat)abstract
    • PPFIBP1 encodes for the liprin-β1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications. 
  •  
9.
  • Östensson, Malin, 1984, et al. (författare)
  • A Possible Mechanism behind Autoimmune Disorders Discovered By Genome-Wide Linkage and Association Analysis in Celiac Disease
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Celiac disease is a common autoimmune disorder characterized by an intestinal inflammation triggered by gluten, a storage protein found in wheat, rye and barley. Similar to other autoimmune diseases such as type 1 diabetes, psoriasis and rheumatoid arthritis, celiac disease is the result of an immune response to self-antigens leading to tissue destruction and production of autoantibodies. Common diseases like celiac disease have a complex pattern of inheritance with inputs from both environmental as well as additive and non-additive genetic factors. In the past few years, Genome Wide Association Studies (GWAS) have been successful in finding genetic risk variants behind many common diseases and traits. To complement and add to the previous findings, we performed a GWAS including 206 trios from 97 nuclear Swedish and Norwegian families affected with celiac disease. By stratifying for HLA-DQ, we identified a new genome-wide significant risk locus covering the DUSP10 gene. To further investigate the associations from the GWAS we performed pathway analyses and two-locus interaction analyses. These analyses showed an over-representation of genes involved in type 2 diabetes and identified a set of candidate mechanisms and genes of which some were selected for mRNA expression analysis using small intestinal biopsies from 98 patients. Several genes were expressed differently in the small intestinal mucosa from patients with celiac autoimmunity compared to intestinal mucosa from control patients. From top-scoring regions we identified susceptibility genes in several categories: 1) polarity and epithelial cell functionality; 2) intestinal smooth muscle; 3) growth and energy homeostasis, including proline and glutamine metabolism; and finally 4) innate and adaptive immune system. These genes and pathways, including specific functions of DUSP10, together reveal a new potential biological mechanism that could influence the genesis of celiac disease, and possibly also other chronic disorders with an inflammatory component.
  •  
10.
  • Ghosheh, Nidal, 1975-, et al. (författare)
  • Human Pluripotent Stem Cell-Derived Hepatocytes Show Higher Transcriptional Correlation with Adult Liver Tissue than with Fetal Liver Tissue
  • 2020
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 5:10, s. 4816-4827
  • Tidskriftsartikel (refereegranskat)abstract
    • Human pluripotent stem cell-derived hepatocytes (hPSC-HEP) display many properties of mature hepatocytes, including expression of important genes of the drug metabolizing machinery, glycogen storage, and production of multiple serum proteins. To this date, hPSC-HEP do not, however, fully recapitulate the complete functionality of in vivo mature hepatocytes. In this study, we applied versatile bioinformatic algorithms, including functional annotation and pathway enrichment analyses, transcription factor binding-site enrichment, and similarity and correlation analyses, to datasets collected from different stages during hPSC-HEP differentiation and compared these to developmental stages and tissues from fetal and adult human liver. Our results demonstrate a high level of similarity between the in vitro differentiation of hPSC-HEP and in vivo hepatogenesis. Importantly, the transcriptional correlation of hPSC-HEP with adult liver (AL) tissues was higher than with fetal liver (FL) tissues (0.83 and 0.70, respectively). Functional data revealed mature features of hPSC-HEP including cytochrome P450 enzymes activities and albumin secretion. Moreover, hPSC-HEP showed expression of many genes involved in drug absorption, distribution, metabolism, and excretion. Despite the high similarities observed, we identified differences of specific pathways and regulatory players by analyzing the gene expression between hPSC-HEP and AL. These findings will aid future intervention and improvement of in vitro hepatocyte differentiation protocol in order to generate hepatocytes displaying the complete functionality of mature hepatocytes. Finally, on the transcriptional level, our results show stronger correlation and higher similarity of hPSC-HEP to AL than to FL. In addition, potential targets for further functional improvement of hPSC-HEP were also identified. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 63
Typ av publikation
tidskriftsartikel (59)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (61)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Tajsharghi, Homa (9)
Ejeskär, Katarina, 1 ... (9)
Pedersen, Nancy L (5)
Kaprio, Jaakko (5)
Moslemi, Ali-Reza (4)
Gatz, Margaret (4)
visa fler...
Tuvblad, Catherine, ... (4)
Willemsen, G (3)
Kaprio, J (3)
Silventoinen, K (3)
Jelenkovic, A (3)
Bartels, M (3)
Abel, Frida, 1974 (3)
Lindahl, Anders, 195 ... (3)
Jeppsson, Anders, 19 ... (3)
Rijsdijk, F (3)
Jonsson, Marianne, 1 ... (3)
Zhang, D. (2)
Vuoksimaa, E (2)
Latvala, A (2)
Nilsson, Emma (2)
Tajsharghi, Homa, 19 ... (2)
Nilsson, Staffan, 19 ... (2)
Levan, Göran (2)
Kariminejad, A (2)
Levan, Göran, 1939 (2)
Olsson, Björn (2)
Ohlsson, Claes, 1965 (2)
Ling, Charlotte (2)
Hopper, John L. (2)
Lichtenstein, Paul (2)
Lichtenstein, P. (2)
Johansson, Markus (2)
Tynelius, Per (2)
Boomsma, D. I. (2)
Magnusson, Patrik K ... (2)
Skytthe, A (2)
Christensen, K (2)
Willemsen, Gonneke (2)
Martin, Nicholas G. (2)
Boomsma, Dorret I. (2)
Rebato, Esther (2)
Asp, Julia, 1973 (2)
Pedersen, N. L. (2)
Sartipy, Peter (2)
Rasmussen, Finn (2)
Sorensen, Thorkild I ... (2)
Tuvblad, C (2)
Wettergren, Yvonne, ... (2)
Medland, S. E. (2)
visa färre...
Lärosäte
Göteborgs universitet (30)
Karolinska Institutet (19)
Jönköping University (11)
Örebro universitet (6)
Lunds universitet (6)
visa fler...
Linköpings universitet (4)
Chalmers tekniska högskola (4)
Umeå universitet (2)
Uppsala universitet (2)
Kungliga Tekniska Högskolan (1)
Högskolan i Borås (1)
visa färre...
Språk
Engelska (63)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (63)
Naturvetenskap (18)
Samhällsvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy