SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Andra medicinska och farmaceutiska grundvetenskaper) ;pers:(Dahlbäck Björn)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Andra medicinska och farmaceutiska grundvetenskaper) > Dahlbäck Björn

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blom, Anna, et al. (författare)
  • Structural requirements for the complement regulatory activities of C4BP
  • 2001
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 276:29, s. 27136-27144
  • Tidskriftsartikel (refereegranskat)abstract
    • C4b-binding protein (C4BP) is a regulator of the classical complement pathway C3 convertase (C4bC2a complex). It is a disulfide-linked polymer of seven alpha-chains and a unique beta-chain; the alpha- and beta-chains are composed of eight and three complement control protein (CCP) domains, respectively. To elucidate the importance of the polymeric nature of C4BP and the structural requirements for the interaction between C4b and the alpha-chain, 19 recombinant C4BP variants were created. Six truncated monomeric variants, nine polymeric variants in which individual CCPs were deleted, and finally, four variants in which double alanine residues were introduced between CCPs were functionally characterized. The smallest truncated C4BP variant still active in regulating fluid phase C4b comprised CCP1-3. The monomeric variants were less efficient than polymeric C4BP in degrading C4b on cell surfaces. All three N-terminal CCP domains contributed to the binding of C4b and were important for full functional activity; CCP2 and CCP3 were the most important. The spatial arrangements of the first CCPs were found to be important, as introduction of alanine residues between CCPs 1 and 2, CCPs 2 and 3, and CCPs 3 and 4 resulted in functional impairment. The results presented here elucidate the structural requirements of individual CCPs of C4BP, as well as their spatial arrangements within and between subunits for expression of full functional activity.
  •  
2.
  • Friedrich, Ute, et al. (författare)
  • Structural and energetic characteristics of the heparin-binding site in antithrombotic protein C
  • 2001
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 276:26, s. 24122-24128
  • Tidskriftsartikel (refereegranskat)abstract
    • Human activated protein C (APC) is a key component of a natural anticoagulant system that regulates blood coagulation. In vivo, the catalytic activity of APC is regulated by two serpins, alpha1-antitrypsin and the protein C inhibitor (PCI), the inhibition by the latter being stimulated by heparin. We have identified a heparin-binding site in the serine protease domain of APC and characterized the energetic basis of the interaction with heparin. According to the counter-ion condensation theory, the binding of heparin to APC is 66% ionic in nature and comprises four to six net ionic interactions. To localize the heparin-binding site, five recombinant APC variants containing amino acid exchanges in loops 37, 60, and 70 (chymotrypsinogen numbering) were created. As demonstrated by surface plasmon resonance, reduction of the electropositive character of loops 37 and 60 resulted in complete loss of heparin binding. The functional consequence was loss in heparin-induced stimulation of APC inhibition by PCI, whereas the PCI-induced APC inhibition in the absence of heparin was enhanced. Presumably, the former observations were due to the inability of heparin to bridge some APC mutants to PCI, whereas the increased inhibition of certain APC variants by PCI in the absence of heparin was due to reduced repulsion between the enzymes and the serpin. The heparin-binding site of APC was also shown to interact with heparan sulfate, albeit with lower affinity. In conclusion, we have characterized and spatially localized the functionally important heparin/heparan sulfate-binding site of APC.
  •  
3.
  • Villoutreix, Bruno O., et al. (författare)
  • Screening the molecular surface of human anticoagulant protein C: a search for interaction sites
  • 2001
  • Ingår i: Journal of Computer-Aided Molecular Design. - 1573-4951. ; 15:1, s. 13-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein C (PC), a 62 kDa multi-modular zymogen, is activated to an anticoagulant serine protease (activated PC or APC) by thrombin bound to thrombomodulin on the surface of endothelial cells. PC/APC interacts with many proteins and the characterisation of these interactions is not trivial. However, molecular modelling methods help to study these complex biological processes and provide basis for rational experimental design and interpretation of the results. PC/APC consists of a Gla domain followed by two EGF modules and a serine protease domain. In this report, we present two structural models for full-length APC and two equivalent models for full-length PC, based on the X-ray structures of Gla-domainless APC and of known serine protease zymogens. The overall elongated shape of the models is further cross-validated using size exclusion chromatography which allows evaluation of the Stokes radius (rs for PC = 33.15 A; rs for APC = 34.19 A), frictional ratio and axial ratio. We then propose potential binding sites at the surface of PC/APC using surface hydrophobicity as a determinant of the preferred sites of intermolecular recognition. Most of the predicted binding sites are consistent with previously reported experimental data, while some clusters highlight new regions that should be involved in protein-protein interactions.
  •  
4.
  • Webb, Joanna H., et al. (författare)
  • Localization of a hydrophobic binding site for anticoagulant protein S on the beta -chain of complement regulator C4b-binding protein
  • 2001
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 276:6, s. 4330-4337
  • Tidskriftsartikel (refereegranskat)abstract
    • C4b-binding protein (C4BP) is a plasma glycoprotein involved in regulation of the complement system. C4BP consists of seven alpha-chains and one unique beta-chain, all constructed of repeating complement control protein (CCP) modules. The beta-chain, made up of three CCPs, binds tightly to vitamin K-dependent protein S, a cofactor to anticoagulant activated protein C. When bound to C4BP, protein S loses its activated protein C cofactor function. In this study, we have mutated potentially important amino acids located at the surface of CCP1 of the beta-chain to probe the protein S-C4BP interaction. The substitutions were designed after analysis of a homology-based three-dimensional structure of the beta-chain and were L27T/F45Q, I16S/V18S, V31T/I33N, I16S/V18S/V31T/I33N, L38S/V39S, and K41E/K42E. The mutants were expressed in a prokaryotic system, purified using an N-terminal His-tag, refolded using an oxido-shuffling system, and tested in several assays for their ability to bind protein S. Our data define Ile(16), Val(18), Val(31), and Ile(33) as crucial for protein S binding, with secondary effects from Leu(38) and Val(39). In addition, Lys(41) and Lys(42) contribute slightly to the interaction. Our results further confirm that surface hydrophobicity analysis may be used to identify ligand recognition sites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Blom, Anna (4)
Villoutreix, Bruno O ... (3)
Friedrich, Ute (2)
Kask, Lena (1)
Wallqvist, Anders (1)
visa fler...
Covell, David G. (1)
Webb, Joanna H. (1)
visa färre...
Lärosäte
Lunds universitet (4)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy