SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Farmaceutiska vetenskaper) ;pers:(Malmsten Martin)"

Search: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Farmaceutiska vetenskaper) > Malmsten Martin

  • Result 1-10 of 74
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Pasupuleti, Mukesh, et al. (author)
  • Preservation of Antimicrobial Properties of Complement Peptide C3a, from Invertebrates to Humans
  • 2007
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 282:4, s. 2520-2528
  • Journal article (peer-reviewed)abstract
    • The human anaphylatoxin peptide C3a, generated during complement activation, exerts antimicrobial effects. Phylogenetic analysis, sequence analyses, and structural modeling studies paired with antimicrobial assays of peptides from known C3a sequences showed that, in particular in vertebrate C3a, crucial structural determinants governing antimicrobial activity have been conserved during the evolution of C3a. Thus, regions of the ancient C3a from Carcinoscorpius rotundicauda as well as corresponding parts of human C3a exhibited helical structures upon binding to bacterial lipopolysaccharide permeabilized liposomes and were antimicrobial against Gram-negative and Gram-positive bacteria. Human C3a and C4a (but not C5a) were antimicrobial, in concert with the separate evolutionary development of the chemotactic C5a. Thus, the results demonstrate that, notwithstanding a significant sequence variation, functional and structural constraints imposed on C3a during evolution have preserved critical properties governing antimicrobial activity.
  •  
2.
  • Pasupuleti, Mukesh, et al. (author)
  • Antimicrobial activity of a C-terminal peptide from human extracellular superoxide dismutase
  • 2009
  • In: BMC research notes. - : Springer Science and Business Media LLC. - 1756-0500. ; 2, s. 136-
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Antimicrobial peptides (AMP) are important effectors of the innate immune system. Although there is increasing evidence that AMPs influence bacteria in a multitude of ways, bacterial wall rupture plays the pivotal role in the bactericidal action of AMPs. Structurally, AMPs share many similarities with endogenous heparin-binding peptides with respect to secondary structure, cationicity, and amphipathicity. FINDINGS: In this study, we show that RQA21 (RQAREHSERKKRRRESECKAA), a cationic and hydrophilic heparin-binding peptide corresponding to the C-terminal region of extracellular superoxide dismutase (SOD), exerts antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Candida albicans. The peptide was also found to induce membrane leakage of negatively charged liposomes. However, its antibacterial effects were abrogated in physiological salt conditions as well as in plasma. CONCLUSION: The results provide further evidence that heparin-binding peptide regions are multifunctional, but also illustrate that cationicity alone is not sufficient for AMP function at physiological conditions. However, our observation, apart from providing a link between heparin-binding peptides and AMPs, raises the hypothesis that proteolytically generated C-terminal SOD-derived peptides could interact with, and possibly counteract bacteria. Further studies are therefore merited to study a possible role of SOD in host defence.
  •  
3.
  • Pasupuleti, Mukesh, et al. (author)
  • Antimicrobial activity of human prion protein is mediated by its N-terminal region
  • 2009
  • In: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 4:10, s. e7358-
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Cellular prion-related protein (PrP(c)) is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrP(c), and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypothesize that PrP(c) could exert antimicrobial activity. METHODOLOGY AND PRINCIPAL FINDINGS: Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the "classical" human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking) liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-alpha in vitro. CONCLUSIONS: The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.
  •  
4.
  • Bysell, Helena, et al. (author)
  • Effect of hydrophobicity on the interaction between antimicrobial peptides and poly(acrylic acid) microgels
  • 2010
  • In: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 114:3, s. 1307-1313
  • Journal article (peer-reviewed)abstract
    • The influence of peptide hydrophobicity on the interaction between antimicrobial peptides and poly(acrylic, acid) microgels wits studied by end-tagging the kininogen-derived antimicrobial peptide GKHKNKGKKNGKHNGWK (GKH17) and its truncated variant KNKGKKNGKH (KNK10) with oligotryptophan groups of different lengths. Microgel deswelling and reswelling in response to peptide binding and release was studied by micromanipulator-assisted light- and fluorescence microscopy, peptide uptake in microgels was determined from solution depletion measurements, and peptide oligomerization was monitored by fluorescence spectroscopy. Results showed that oligomerizition/aggregation of the hydrophobically end-tagged peptides is either absent or characterized by exposure of the tryptophan residues to the aqueous ambient, the latter suggesting small aggregation numbers. In addition, peptide uptake and affinity to the poly(acrylic acid) microgels increase with the number of trypthophan residues in the hydrophobic end tag, whereas peptide-induced microgel deswelling kinetics did not display this tag-length dependence to the same extent. Instead, long end tags resulted in anomalous shell formation, opposing further peptide-induced network deswelling. Theoretical modeling suggested that the deswelling kinetics in response to peptide binding is largely controlled by stagnant layer diffusion, but also that for peptides with Sufficiently long hydrophobic tags, the shell constitutes an additional diffusion barrier, thus resulting in slower microgel deswelling. In addition, GKH17 and KNK10 peptides lacking the tryptophan end tags were Substantially released on reducing peptide-microgel electrostatic interactions through addition of salt, an effect more pronounced for the shorter KNK10 peptide, whereas the hydrophobically end-tagged peptides remained bound to the microgels also at high ionic strength.
  •  
5.
  • Pasupuleti, Mukesh, et al. (author)
  • End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing
  • 2009
  • In: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 4:4, s. e5285-
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Due to increasing resistance development among bacteria, antimicrobial peptides (AMPs), are receiving increased attention. Ideally, AMP should display high bactericidal potency, but low toxicity against (human) eukaryotic cells. Additionally, short and proteolytically stable AMPs are desired to maximize bioavailability and therapeutic versatility. METHODOLOGY AND PRINCIPAL FINDINGS: A facile approach is demonstrated for reaching high potency of ultra-short antimicrobal peptides through end-tagging with W and F stretches. Focusing on a peptide derived from kininogen, KNKGKKNGKH (KNK10) and truncations thereof, end-tagging resulted in enhanced bactericidal effect against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Through end-tagging, potency and salt resistance could be maintained down to 4-7 amino acids in the hydrophilic template peptide. Although tagging resulted in increased eukaryotic cell permeabilization at low ionic strength, the latter was insignificant at physiological ionic strength and in the presence of serum. Quantitatively, the most potent peptides investigated displayed bactericidal effects comparable to, or in excess of, that of the benchmark antimicrobial peptide LL-37. The higher bactericidal potency of the tagged peptides correlated to a higher degree of binding to bacteria, and resulting bacterial wall rupture. Analogously, tagging enhanced peptide-induced rupture of liposomes, particularly anionic ones. Additionally, end-tagging facilitated binding to bacterial lipopolysaccharide, both effects probably contributing to the selectivity displayed by these peptides between bacteria and eukaryotic cells. Importantly, W-tagging resulted in peptides with maintained stability against proteolytic degradation by human leukocyte elastase, as well as staphylococcal aureolysin and V8 proteinase. The biological relevance of these findings was demonstrated ex vivo for pig skin infected by S. aureus and E. coli. CONCLUSIONS/SIGNIFICANCE: End-tagging by hydrophobic amino acid stretches may be employed to enhance bactericidal potency also of ultra-short AMPs at maintained limited toxicity. The approach is of general applicability, and facilitates straightforward synthesis of hydrophobically modified AMPs without the need for post-peptide synthesis modifications.
  •  
6.
  • Sonesson, Andreas, et al. (author)
  • Antifungal activity of C3a and C3a-derived peptides against Candida
  • 2007
  • In: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 0005-2736 .- 1879-2642. ; 1768:2, s. 346-353
  • Journal article (peer-reviewed)abstract
    • Antimicrobial peptides are generated during activation of the complement system [Nordahl et al. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:16879-16884]. Here we show that the anaphylatoxin C3a exerts antimicrobial effects against the yeast Candida. Fluorescence microscopy and electron microscopy analysis demonstrated that C3a-derived peptides bound to the cell surface of Candida, and induced membrane perturbations and release of extracellular material. Various Candida isolates were found to induce complement degradation, leading to generation of C3a. Arginine residues were found to be critical for the antifungal and membrane breaking activity of a C3a-derived antimicrobial peptide, CNY21 (C3a; Cys57–Arg77). A CNY21 variant with increased positive net charge displayed enhanced antifungal activity. Thus, C3a-derived peptides can be utilized as templates in the development of peptide-based antifungal therapies.
  •  
7.
  • Singh, Shalini, et al. (author)
  • Conformational Aspects of High Content Packing of Antimicrobial Peptides in Polymer Microgels
  • 2017
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 9:46, s. 40094-40106
  • Journal article (peer-reviewed)abstract
    • Successful use of microgels as delivery systems of antimicrobial peptides (AMPs) requires control of factors determining peptide loading and release to/from the microgels as well as of membrane interactions of both microgel particles and released peptides. Addressing these, we here investigate effects of microgel charge density and conformationally induced peptide amphiphilicity on AMP loading and release using detailed nuclear magnetic resonance (NMR) structural studies combined with ellipsometry, isothermal titration calorimetry, circular dichroism, and light scattering. In parallel, consequences of peptide loading and release for membrane interactions and antimicrobial effects were investigated. In doing so, poly(ethyl acrylate-co-methacrylic acid) microgels were found to incorporate the cationic AMPs EFK17a (EFKRIVQRIKDFLRNLV) and its partially D-amino acid-substituted variant EFK17da (E(dF)KR(dI)VQR(dI)KD(dF)LRNLV). Peptide incorporation was found to increase with increasing with microgel charge density and peptide amphiphilicity. After microgel incorporation, which appeared to occur preferentially in the microgel core, NMR showed EFK17a to form a helix with pronounced amphiphilicity, while EFK17da displayed a folded conformation, stabilized by a hydrophobic hub consisting of aromatic/aromatic and aliphatic/aromatic interactions, resulting in much lower amphiphilicity. Under wide ranges of peptide loading, the microgels displayed net negative z-potential. Such negatively charged microgels do not bind to, nor lyre, bacteria-mimicking membranes. Instead, membrane disruption in these systems is mediated largely by peptide release, which in turn is promoted at higher ionic strength and lower peptide amphiphilicity. Analogously, antimicrobial effects against Escherichia coli were found to be dictated by peptide release. Taken together, the findings show that peptide loading, packing, and release strongly affect the performance of microgels as AMP delivery systems, effects that can be tuned by (conformationally induced) peptide amphiphilicity and by microgel charge density.
  •  
8.
  • Xie, Maomao, et al. (author)
  • Antibacterial Nanomaterials : Mechanisms, Impacts on Antimicrobial Resistance and Design Principles
  • 2023
  • In: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 62:17
  • Research review (peer-reviewed)abstract
    • Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.
  •  
9.
  • Malekkhaiat Häffner, Sara, et al. (author)
  • Nanoclay-induced bacterial flocculation for infection confinement
  • 2020
  • In: Journal of Colloid and Interface Science. - : Elsevier. - 0021-9797 .- 1095-7103. ; 562, s. 71-80
  • Journal article (peer-reviewed)abstract
    • Effects of size and charge of anionic nanoclays on their interactions with bacteria-mimicking lipid membranes, bacterial lipopolysaccharide (LPS), and Gram-negative bacteria were investigated using ellipsometry, dynamic light scattering, ζ-potential measurements, and confocal microscopy combined with Live/Dead staining. Based on particle size and charge density, three different anionic hectorite nanoclays were employed, and investigated in the presence and absence of the net cationic human antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES). In the absence of this peptide, the nanoclays were found not to bind to similarly anionic bacteria-mimicking model phospholipid membranes, nor to destabilize these. Similarly, while all nanoclays induced aggregation of Escherichia coli bacteria, the flocculated bacteria remained alive after aggregation. In contrast, LL-37 alone, i.e. in the absence of nanoclay particles, displays antimicrobial properties through membrane lysis, but does not cause bacterial aggregation in the concentration range investigated. After loading the nanoclays with LL-37, potent bacterial aggregation combined with bacterial membrane lysis was observed for all nanoclay sizes and charge densities. Demonstrating the potential of these combined systems for confinement of infection, LPS-induced NF-κB activation in human monocytes was found to be strongly suppressed after nanoclay-mediated aggregation, with a wide tolerance for nanoparticle size and charge density.
  •  
10.
  • Parra-Ortiz, Elisa, et al. (author)
  • Oxidation of Polyunsaturated Lipid Membranes by Photocatalytic Titanium Dioxide Nanoparticles : Role of pH and Salinity
  • 2020
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:29, s. 32446-32460
  • Journal article (peer-reviewed)abstract
    • In the present study, UV-induced membrane destabilization by TiO2 (anatase) nanoparticles was investigated by neutron reflectometry (NR), small-angle X-ray scattering (SAXS), quartz crystal microbalance with dissipation (QCM-D), dynamic light scattering (DLS), and ζ-potential measurements for phospholipid bilayers formed by zwitterionic palmitoyloleoylphosphatidylcholine (POPC) containing biologically relevant polyunsaturations. TiO2 nanoparticles displayed pH-dependent binding to such bilayers. Nanoparticle binding alone, however, has virtually no destabilizing effects on the lipid bilayers. In contrast, UV illumination in the presence of TiO2 nanoparticles activates membrane destabilization as a result of lipid oxidation caused by the generation of reactive oxygen species (ROS), primarily •OH radicals. Despite the short diffusion length characterizing these, the direct bilayer attachment of TiO2 nanoparticles was demonstrated to not be a sufficient criterion for an efficient UV-induced oxidation of bilayer lipids, the latter also depending on ROS generation in bulk solution. From SAXS and NR, minor structural changes were seen when TiO2 was added in the absence of UV exposure, or on UV exposure in the absence of TiO2 nanoparticles. In contrast, UV exposure in the presence of TiO2 nanoparticles caused large-scale structural transformations, especially at high ionic strength, including gradual bilayer thinning, lateral phase separation, increases in hydration, lipid removal, and potential solubilization into aggregates. Taken together, the results demonstrate that nanoparticle-membrane interactions ROS generation at different solution conditions act in concert to induce lipid membrane destabilization on UV exposure and that both of these need to be considered for understanding the performance of UV-triggered TiO2 nanoparticles in nanomedicine.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 74
Type of publication
journal article (57)
research review (7)
doctoral thesis (6)
other publication (2)
book chapter (2)
Type of content
peer-reviewed (64)
other academic/artistic (10)
Author/Editor
Schmidtchen, Artur (28)
Ringstad, Lovisa (12)
Mörgelin, Matthias (9)
Davoudi, Mina (7)
Hansson, Per (6)
show more...
Bysell, Helena (6)
Nordström, Randi (6)
Strömstedt, Adam A. (4)
Rydengård, Victoria (4)
Hansson, Per, Profes ... (3)
Papareddy, Praveen (3)
Kasetty, Gopinath (2)
Lindholm-Sethson, Br ... (2)
Malkoch, Michael, 19 ... (2)
Heinz, Andrea (2)
Andrén, Oliver C. J. (2)
Strömstedt, Adam A., ... (1)
Walse, Björn (1)
Nylander, Tommy (1)
Johansson, Christian (1)
Foged, C (1)
Alvarez-Asencio, Rub ... (1)
Edwards, Katarina (1)
Rutland, Mark W (1)
Sørensen, Ole E. (1)
Sonesson, Andreas (1)
Andersson, Per (1)
Göransson, Ulf, 1970 ... (1)
Haglöf, Jakob (1)
Li, Li (1)
Surewicz, Witold K. (1)
Geladi, Paul (1)
Rodriguez, M (1)
Egesten, Arne (1)
Nordenfelt, Pontus (1)
Collin, Mattias (1)
Albiger, Barbara (1)
Sjövall, Peter (1)
Ringstad, L (1)
Lundqvist, Katarina (1)
Simonsen, A (1)
Nielsen, M. (1)
Roupé, Markus (1)
Alenfall, Jan (1)
Bengtsson, E (1)
Campbell, Richard A. (1)
Wessman, Per (1)
Fredrikson, G. N. (1)
Nyström, Josefina (1)
show less...
University
Uppsala University (66)
Lund University (40)
Royal Institute of Technology (3)
Umeå University (2)
RISE (2)
Swedish University of Agricultural Sciences (1)
Language
English (74)
Research subject (UKÄ/SCB)
Medical and Health Sciences (74)
Natural sciences (17)
Engineering and Technology (5)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view