SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Mikrobiologi inom det medicinska området) ;pers:(Singh Birendra)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Mikrobiologi inom det medicinska området) > Singh Birendra

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mukherjee, Oindrilla, et al. (författare)
  • A fusion protein derived from Moraxella catarrhalis and Neisseria meningitidis aimed for immune modulation of human B cells
  • 2015
  • Ingår i: Human Vaccines & Immunotherapeutics. - : Informa UK Limited. - 2164-5515 .- 2164-554X. ; 11:9, s. 2223-2227
  • Tidskriftsartikel (refereegranskat)abstract
    • Moraxella IgD-binding protein (MID) is a well characterized trimeric autotransporter that specifically targets the IgD of B cells. We fused the membrane anchor of the meningococcal autotransporter NhhA with the IgD-binding region of MID (aa 962-1200) to create a chimeric protein designated as NID. The aim was to use this specific targeting to provide a better vaccine candidate against meningococci, in particular serogroup B by enhancing the immunogenicity of NhhA. NID was thereafter recombinantly expressed in E. coli. The NID-expressing E. coli bound to peripheral B lymphocytes that resulted in cellular activation. Furthermore, we also successfully expressed NID on outer membrane vesicles, nanoparticles that are commonly used in meningococcal vaccines. This study thus highlights the applicability of the menigococcal-Moraxella fusion protein NID to be used for specific targeting of vaccine components to the IgD B cell receptor.
  •  
2.
  • Singh, Birendra, et al. (författare)
  • A fine-tuned interaction between the trimeric autotransporter Haemophilus surface fibrils and vitronectin leads to serum resistance and adherence to respiratory epithelial cells.
  • 2014
  • Ingår i: Infection and Immunity. - 1098-5522. ; 82:6, s. 2378-2389
  • Tidskriftsartikel (refereegranskat)abstract
    • Haemophilus influenzae type b (Hib) escapes the host immune system by recruitment of the complement regulator vitronectin that inhibits the formation of the membrane attack complex (MAC) by inhibiting C5b-C7 complex formation and C9 polymerization. We previously reported that Hib acquires vitronectin at the surface by using Haemophilus surface fibrils (Hsf). Here we studied in detail the interaction between Hsf and vitronectin and its role in inhibition of MAC formation and invasion of lung epithelial cells. The vitronectin-binding region of Hsf was defined at the N-terminal comprising amino acids Hsf 429-652. Moreover, the Hsf recognition site on vitronectin consisted of the C-terminal amino acids 352-374. H. influenzae was killed more rapidly in vitronectin-depleted serum when compared to normal human serum (NHS), and an increased MAC deposition was observed at the surface of an Hsf-deficient H. influenzae mutant. In parallel, Hsf-expressing E. coli selectively acquired vitronectin from serum that resulted in significant inhibition of the MAC. Moreover, when vitronectin was bound to Hsf an increased bacterial adherence and internalization of epithelial cells was observed. Taken together, we have defined a fine-tuned protein-protein interaction between Hsf and vitronectin that may contribute to an increased virulence of Hib.
  •  
3.
  • Singh, Birendra, et al. (författare)
  • Assays for Studying the Role of Vitronectin in Bacterial Adhesion and Serum Resistance
  • 2018
  • Ingår i: Journal of Visualized Experiments. - Cambride, USA : Journal of Visualized Experiments. - 1940-087X. ; :140
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteria utilize complement regulators as a means of evading the host immune response. Here, we describe protocols for evaluating the role vitronectin acquisition at the bacterial cell surface plays in resistance to the host immune system. Flow cytometry experiments identified human plasma vitronectin as a ligand for the bacterial receptor outer membrane protein H of Haemophilus influenzae type f. An enzyme-linked immunosorbent assay was employed to characterize the protein-protein interactions between purified recombinant protein H and vitronectin, and binding affinity was assessed using bio-layer interferometry. The biological importance of the binding of vitronectin to protein H at the bacterial cell surface in evasion of the host immune response was confirmed using a serum resistance assay with normal and vitronectin-depleted human serum. The importance of vitronectin in bacterial adherence was analyzed using glass slides with and without vitronectin coating, followed by Gram staining. Finally, bacterial adhesion to human alveolar epithelial cell monolayers was investigated. The protocols described here can be easily adapted to the study of any bacterial species of interest.
  •  
4.
  • Paulsson, Magnus, et al. (författare)
  • Peptidoglycan-Binding Anchor Is a Pseudomonas aeruginosa OmpA Family Lipoprotein With Importance for Outer Membrane Vesicles, Biofilms, and the Periplasmic Shape
  • 2021
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The outer membrane protein A (OmpA) family contains an evolutionary conserved domain that links the outer membrane in Gram-negative bacteria to the semi-rigid peptidoglycan (PG) layer. The clinically significant pathogen Pseudomonas aeruginosa carries several OmpA family proteins (OprF, OprL, PA0833, and PA1048) that share the PG-binding domain. These proteins are important for cell morphology, membrane stability, and biofilm and outer membrane vesicle (OMV) formation. In addition to other OmpAs, in silico analysis revealed that the putative outer membrane protein (OMP) with gene locus PA1041 is a lipoprotein with an OmpA domain and, hence, is a potential virulence factor. This study aimed to evaluate PA1041 as a PG-binding protein and describe its effect on the phenotype. Clinical strains were confirmed to contain the lipoprotein resulting from PA1041 expression with Western blot, and PG binding was verified in enzyme-linked immunosorbent assay (ELISA). By using a Sepharose bead-based ELISA, we found that the lipoprotein binds to meso-diaminopimelic acid (mDAP), an amino acid in the pentapeptide portion of PGs. The reference strain PAO1 and the corresponding transposon mutant PW2884 devoid of the lipoprotein were examined for phenotypic changes. Transmission electron microscopy revealed enlarged periplasm spaces near the cellular poles in the mutant. In addition, we observed an increased release of OMV, which could be confirmed by nanoparticle tracking analysis. Importantly, mutants without the lipoprotein produced a thick, but loose and unorganized, biofilm in flow cells. In conclusion, the lipoprotein from gene locus PA1041 tethers the outer membrane to the PG layer, and mutants are viable, but display severe phenotypic changes including disordered biofilm formation. Based upon the phenotype of the P. aeruginosa PW2884 mutant and the function of the protein, we designate the lipoprotein with locus tag PA1041 as “peptidoglycan-binding anchor” (Pba).
  •  
5.
  • Singh, Birendra, et al. (författare)
  • Crystallization and X-ray diffraction analysis of a novel surface-adhesin protein: protein E from Haemophilus influenzae.
  • 2012
  • Ingår i: Acta Crystallographica. Section F: Structural Biology and Crystallization Communications. - 2053-230X. ; 68:Pt 2, s. 222-226
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein E (PE) is a ubiquitous multifunctional surface protein of Haemophilus spp. and other bacterial pathogens of the Pasteurellaceae family. H. influenzae utilizes PE for attachment to respiratory epithelial cells. In addition, PE interacts directly with plasminogen and the extracellular matrix (ECM) components vitronectin and laminin. Vitronectin is a complement regulator that inhibits the formation of the membrane-attack complex (MAC). PE-mediated vitronectin recruitment at the H. influenzae surface thus inhibits MAC and protects against serum bactericidal activity. Laminin is an abundant ECM protein and is present in the basement membrane that helps in adherence of H. influenzae during colonization. Here, the expression, purification and crystallization of and the collection of high-resolution data for this important H. influenzae adhesin are reported. To solve the phase problem for PE, Met residues were introduced and an SeMet variant was expressed and crystallized. Both native and SeMet-containing PE gave plate-like crystals in space group P2(1), with unit-cell parameters a = 44, b = 57, c = 61 Å, β = 96°. Diffraction data collected from native and SeMet-derivative crystals extended to resolutions of 1.8 and 2.6 Å, respectively.
  •  
6.
  • Singh, Birendra, et al. (författare)
  • The unique structure of Haemophilus influenzae protein E reveals multiple binding sites for host factors.
  • 2013
  • Ingår i: Infection and Immunity. - 1098-5522. ; 81:3, s. 801-814
  • Tidskriftsartikel (refereegranskat)abstract
    • Haemophilus influenzae protein E (PE) is a multifunctional adhesin, involved in direct interactions with lung epithelial cells and host proteins, including plasminogen and the extracellular matrix proteins vitronectin and laminin. We recently crystallized PE and successfully collected X-ray diffraction data to 1.8 Å. Here we solved the structure of a recombinant version of PE and analyzed different functional regions. It is a dimer in solution and in the asymmetric unit of the crystals. The dimer has a structure that resembles a flattened β-barrel. It is however not a true β-barrel as there are differences in both the hydrogen bonding pattern and the shape. Each monomer consisted of a 6-stranded antiparallel β-sheet with a rigid α-helix at the C-terminal tethered to the concave side of the sheet by a disulfide bridge. The laminin/plasminogen binding region (residues 41-68) is exposed, while the vitronectin binding region (residues 84-108) is partially accessible in the dimer. The dimerized PE explains the simultaneous interaction with laminin and vitronectin. In addition, we found this unique adhesin being present in many bacterial genera of the family Pasteurallaceae and also orthologues in other unrelated species (Enterobacter cloacae and Listeria monocytogenes). Peptides corresponding to the surface-exposed regions PE24-37, PE74-89, and PE134-156 were immunogenic in the mouse. Importantly, these peptide-based antibodies also recognised PE at the bacterial surface. Taken together, our detailed structure of PE explains how this important virulence factor of H. influenzae simultaneously interacts with host vitronectin, laminin or plasminogen promoting bacterial pathogenesis.
  •  
7.
  • Fish, Abigail I., et al. (författare)
  • The Rickettsia conorii Adr1 interacts with the c-terminus of human vitronectin in a salt-sensitive manner
  • 2017
  • Ingår i: Frontiers in cellular and infection microbiology. - : Frontiers Media SA. - 2235-2988. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Spotted fever group (SFG) Rickettsia species are inoculated into the mammalian bloodstream by hematophagous arthropods. Once in the bloodstream and during dissemination, the survival of these pathogens is dependent upon the ability of these bacteria to evade serum-borne host defenses until a proper cellular host is reached. Rickettsia conorii expresses an outer membrane protein, Adr1, which binds the complement inhibitory protein vitronectin to promote resistance to the anti-bacterial effects of the terminal complement complex. Adr1 is predicted to consist of 8 transmembrane beta sheets that form a membrane-spanning barrel with 4 peptide loops exposed to the extracellular environment. We previously demonstrated that Adr1 derivatives containing either loop 3 or 4 are sufficient to bind Vn and mediate resistance to serum killing when expressed at the outer-membrane of E. coli. By expressing R. conorii Adr1 on the surface of non-pathogenic E. coli, we demonstrate that the interaction between Adr1 and vitronectin is salt-sensitive and cannot be interrupted by addition of heparin. Additionally, we utilized vitroenctin-derived peptides to map the minimal Adr1/vitronectin interaction to the C-terminal region of vitronectin. Furthermore, we demonstrate that specific charged amino acid residues located within loops 3 and 4 of Adr1 are critical for mediating resistance to complement-mediated killing. Interestingly, Adr1 mutants that were no longer sufficient to mediate resistance to serum killing still retained the ability to bind to Vn, suggesting that Adr1-Vn interactions responsible for resistance to serum killing are more complex than originally hypothesized. In summary, elucidation of the mechanisms governing Adr1-Vn binding will be useful to specifically target this protein-protein interaction for therapeutic intervention.
  •  
8.
  • Hallström, Teresia, et al. (författare)
  • Conserved Patterns of Microbial Immune Escape: Pathogenic Microbes of Diverse Origin Target the Human Terminal Complement Inhibitor Vitronectin via a Single Common Motif.
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathogenicity of many microbes relies on their capacity to resist innate immunity, and to survive and persist in an immunocompetent human host microbes have developed highly efficient and sophisticated complement evasion strategies. Here we show that different human pathogens including Gram-negative and Gram-positive bacteria, as well as the fungal pathogen Candida albicans, acquire the human terminal complement regulator vitronectin to their surface. By using truncated vitronectin fragments we found that all analyzed microbial pathogens (n = 13) bound human vitronectin via the same C-terminal heparin-binding domain (amino acids 352-374). This specific interaction leaves the terminal complement complex (TCC) regulatory region of vitronectin accessible, allowing inhibition of C5b-7 membrane insertion and C9 polymerization. Vitronectin complexed with the various microbes and corresponding proteins was thus functionally active and inhibited complement-mediated C5b-9 deposition. Taken together, diverse microbial pathogens expressing different structurally unrelated vitronectin-binding molecules interact with host vitronectin via the same conserved region to allow versatile control of the host innate immune response.
  •  
9.
  • Hallström, Teresia, et al. (författare)
  • Pseudomonas aeruginosa Uses Dihydrolipoamide Dehydrogenase (Lpd) to Bind to the Human Terminal Pathway Regulators Vitronectin and Clusterin to Inhibit Terminal Pathway Complement Attack.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The opportunistic human pathogen Pseudomonas aeruginosa controls host innate immune and complement attack. Here we identify Dihydrolipoamide dehydrogenase (Lpd), a 57 kDa moonlighting protein, as the first P. aeruginosa protein that binds the two human terminal pathway inhibitors vitronectin and clusterin. Both human regulators when bound to the bacterium inhibited effector function of the terminal complement, blocked C5b-9 deposition and protected the bacterium from complement damage. P. aeruginosa when challenged with complement active human serum depleted from vitronectin was severely damaged and bacterial survival was reduced by over 50%. Similarly, when in human serum clusterin was blocked by a mAb, bacterial survival was reduced by 44%. Thus, demonstrating that Pseudomonas benefits from attachment of each human regulator and controls complement attack. The Lpd binding site in vitronectin was localized to the C-terminal region, i.e. to residues 354-363. Thus, Lpd of P. aeruginosa is a surface exposed moonlighting protein that binds two human terminal pathway inhibitors, vitronectin and clusterin and each human inhibitor when attached protected the bacterial pathogen from the action of the terminal complement pathway. Our results showed insights into the important function of Lpd as a complement regulator binding protein that might play an important role in virulence of P. aeruginosa.
  •  
10.
  • Mühlenkamp, Melanie C., et al. (författare)
  • Vitronectin Binds to a Specific Stretch within the Head Region of Yersinia Adhesin A and Thereby Modulates Yersinia enterocolitica Host Interaction
  • 2017
  • Ingår i: Journal of Innate Immunity. - : S. Karger AG. - 1662-811X .- 1662-8128. ; 9:1, s. 33-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Complement resistance is an important virulence trait of Yersinia enterocolitica (Ye). The predominant virulence factor expressed by Ye is Yersinia adhesin A (YadA), which enables bacterial attachment to host cells and extracellular matrix and additionally allows the acquisition of soluble serum factors. The serum glycoprotein vitronectin (Vn) acts as an inhibitory regulator of the terminal complement complex by inhibiting the lytic pore formation. Here, we show YadA-mediated direct interaction of Ye with Vn and investigated the role of this Vn binding during mouse infection in vivo. Using different Yersinia strains, we identified a short stretch in the YadA head domain of Ye O:9 E40, similar to the ‘uptake region' of Y. pseudotuberculosis YPIII YadA, as crucial for efficient Vn binding. Using recombinant fragments of Vn, we found the C-terminal part of Vn, including heparin-binding domain 3, to be responsible for binding to YadA. Moreover, we found that Vn bound to the bacterial surface is still functionally active and thus inhibits C5b-9 formation. In a mouse infection model, we demonstrate that Vn reduces complement-mediated killing of Ye O:9 E40 and, thus, improved bacterial survival. Taken together, these findings show that YadA-mediated Vn binding influences Ye pathogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy