SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Neurovetenskaper) ;pers:(Lundberg Cecilia)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper Neurovetenskaper) > Lundberg Cecilia

  • Resultat 1-10 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blixt Wojciechowski, Anita, et al. (författare)
  • Subretinal Transplantation of Brain-derived Precursor Cells to Young RCS Rats Promotes Photoreceptor Cell Survival☆
  • 2002
  • Ingår i: Experimental Eye Research. - : Elsevier. - 0014-4835 .- 1096-0007. ; 75:1, s. 23-37
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential use of in vitro-expanded precursor cells or cell lines in brain repair includes transplantation of such cells for cell replacement purposes and the activation of host cells to provide 'self-repair'. Recently, it has been reported that the immortalized brain-derived cell line RN33B (derived from the embryonic rat medullary raphe) survive, integrate and differentiate after subretinal grafting to normal adult rats. Here, it is demonstrated that grafts of these cells survive for at least 6 weeks after implantation into postnatal days 21 and 35 retinas of normal and Royal College of Surgeons rats, a model of retinal degeneration. Implanted cells integrate into the retinal pigment epithelium and the inner retinal layers, and the anterior part of the optic nerve of both normal and Royal College of Surgeons rats. The RN33B cells migrate within the retina, occupying the whole retina from one eccentricity to the other. A significant number of the grafted cells differentiate into glial cells, as shown by the double labelling of the reporter genes LacZ or green fluorescent protein, with several glial markers, including oligodendrocytic markers. Many implanted cells in the host retina were in a proliferative stage judging from proliferative cell nuclear antigen and SV40 large T-antigen immunohistochemistry. Interestingly, there was a promotion of photoreceptor survival, extending over more than 2/3 of the superior hemisphere, in Royal College of Surgeons rats transplanted at postnatal day 21, but not at postnatal day 35. In addition, grafted cells were found in the surviving photoreceptor layer in these rats.
  •  
2.
  • Novozhilova, Ekaterina, et al. (författare)
  • Neuronal Differentiation and Extensive Migration of Human Neural Precursor Cells following Co-Culture with Rat Auditory Brainstem Slices
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital or acquired hearing loss is often associated with a progressive degeneration of the auditory nerve (AN) in the inner ear. The AN is composed of processes and axons of the bipolar spiral ganglion neurons (SGN), forming the connection between the hair cells in the inner ear cochlea and the cochlear nuclei (CN) in the brainstem (BS). Therefore, replacement of SGNs for restoring the AN to improve hearing function in patients who receive a cochlear implantation or have severe AN malfunctions is an attractive idea. A human neural precursor cell (HNPC) is an appropriate donor cell to investigate, as it can be isolated and expanded in vitro with maintained potential to form neurons and glia. We recently developed a post-natal rodent in vitro auditory BS slice culture model including the CN and the central part of the AN for initial studies of candidate cells. Here we characterized the survival, distribution, phenotypic differentiation, and integration capacity of HNPCs into the auditory circuitry in vitro. HNPC aggregates (spheres) were deposited adjacent to or on top of the BS slices or as a monoculture (control). The results demonstrate that co-cultured HNPCs compared to monocultures (1) survive better, (2) distribute over a larger area, (3) to a larger extent and in a shorter time-frame form mature neuronal and glial phenotypes. HNPC showed the ability to extend neurites into host tissue. Our findings suggest that the HNPC-BS slice co-culture is appropriate for further investigations on the integration capacity of HNPCs into the auditory circuitry.
  •  
3.
  • Quintino, Luis, et al. (författare)
  • Destabilizing Domains Enable Long-Term and Inert Regulation of GDNF Expression in the Brain
  • 2018
  • Ingår i: Molecular Therapy - Methods and Clinical Development. - : Elsevier BV. - 2329-0501. ; 11, s. 29-39
  • Tidskriftsartikel (refereegranskat)abstract
    • Regulation of therapeutic transgene expression can increase the safety of gene therapy interventions, especially when targeting critical organs such as the brain. Although several gene expression systems have been described, none of the current systems has the required safety profile for clinical applications. Our group has previously adapted a system for novel gene regulation based on the destabilizing domain degron technology to successfully regulate glial cell-line derived neurotrophic factor in the brain (GDNF-F-DD). In the present study, we used GDNF-F-DD as a proof-of-principle molecule to fully characterize DD regulation in the brain. Our results indicate that DD could be regulated in a dose-dependent manner. In addition, GDNF-F-DD could also be induced in vivo repeatedly, without loss of activity or efficacy in vivo. Finally, DD regulation was able to be sustained for 24 weeks without loss of expression or any overt toxicity. The present study shows that DD has great potential to regulate gene expression in the brain.
  •  
4.
  • Ling, Mia, et al. (författare)
  • Induction of neurites by the regulatory domains of PKCdelta and epsilon is counteracted by PKC catalytic activity and by the RhoA pathway.
  • 2004
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 1090-2422 .- 0014-4827. ; 292:1, s. 135-150
  • Tidskriftsartikel (refereegranskat)abstract
    • We have shown that protein kinase C (PKC) var epsilon, independently of its kinase activity, via its regulatory domain (RD), induces neurites in neuroblastoma cells. This study was designed to evaluate whether the same effect is obtained in nonmalignant neural cells and to dissect mechanisms mediating the effect. Overexpression of PKCvar epsilon resulted in neurite induction in two immortalised neural cell lines (HiB5 and RN33B). Phorbol ester potentiated neurite outgrowth from PKCvar epsilon-overexpressing cells and led to neurite induction in cells overexpressing PKCδ. The effects were potentiated by blocking the PKC catalytic activity with GF109203X. Furthermore, kinase-inactive PKCδ induced more neurites than the wild-type isoform. The isolated regulatory domains of novel PKC isoforms also induced neurites. Experiments with PKCδ-overexpressing HiB5 cells demonstrated that phorbol ester, even in the presence of a PKC inhibitor, led to a decrease in stress fibres, indicating an inactivation of RhoA. Active RhoA blocked PKC-induced neurite outgrowth, and inhibition of the RhoA effector ROCK led to neurite outgrowth. This demonstrates that neurite induction by the regulatory domain of PKCδ can be counteracted by PKCδ kinase activity, that PKC-induced neurite outgrowth is accompanied by stress fibre dismantling indicating an inactivation of RhoA, and that the RhoA pathway suppresses PKC-mediated neurite outgrowth.
  •  
5.
  • Blixt Wojciechowski, Anita, et al. (författare)
  • Migratory capacity of the cell line RN33B and the host glial cell response after subretinal transplantation to normal adult rats
  • 2004
  • Ingår i: Glia. - : John Wiley & Sons. - 0894-1491 .- 1098-1136. ; 47:1, s. 58-67
  • Tidskriftsartikel (refereegranskat)abstract
    • As previously reported, the brain-derived precursor cell line RN33B has a great capacity to migrate when transplanted to adult brain or retina. This cell line is immortalized with the SV40 large T-antigen and carries the reporter gene LacZ and the green fluorescent protein GFP. In the present study, the precursor cells were transplanted to the subretinal space of adult rats and investigated early after grafting. The purpose was to demonstrate the migration of the grafted cells from the subretinal space into the retina and the glial cell response of the host retina. Detachment caused by the transplantation method was persistent up to 4 days after transplantation, and then reattachment occurred. The grafted cells were shown to migrate in between the photoreceptor cells before entering into the plexiform layers. Molecules involved in migration of immature neuronal cells as the polysialylated neural cell adhesion molecule (PSA-NCAM) and the collapsing response-mediated protein 4 (TUC-4) was found in the plexiform layers of the host retina, but not in the grafted cells. The expression of the intermediate filaments GFAP, vimentin, and nestin was intensely upregulated immediately after transplantation. A less pronounced upregulation was observed on sham-operated animals. In summary, the RN33B cell line migrated promptly posttransplantation and settled preferably into the plexiform layers of the retina, the same layers where the migration cues PSA-NCAM and TUC-4 were established. In addition, both the transplantation method per se and the implanted cells caused an intense glial cell response by the host retina.
  •  
6.
  • Englund Johansson, Ulrica, et al. (författare)
  • Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections.
  • 2002
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 173:1, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we examined the ability of human neural progenitors from the embryonic forebrain, expanded for up to a year in culture in the presence of growth factors, to respond to environmental signals provided by the developing rat brain. After survival times of up to more than a year after transplantation into the striatum, the hippocampus, and the subventricular zone, the cells were analyzed using human-specific antisera and the reporter gene green fluorescent protein (GFP). From grafts implanted in the striatum, the cells migrated extensively, especially within white matter structures. Neuronal differentiation was most pronounced at the striatal graft core, with axonal projections extending caudally along the internal capsule into mesencephalon. In the hippocampus, cells migrated throughout the entire hippocampal formation and into adjacent white matter tracts, with differentiation into neurons both in the dentate gyrus and in the CA1-3 regions. Directed migration along the rostral migratory stream to the olfactory bulb and differentiation into granule cells were observed after implantation into the subventricular zone. Glial differentiation occurred at all three graft sites, predominantly at the injection sites, but also among the migrating cells. A lentiviral vector was used to transduce the cells with the GFP gene prior to grafting. The reporter gene was expressed for at least 15 weeks and the distribution of the gene product throughout the entire cytoplasmic compartment of the expressing cells allowed for a detailed morphological analysis of a portion of the grafted cells. The extensive integration and differentiation of in vitro-expanded human neural progenitor cells indicate that multipotent progenitors are capable of responding in a regionally specific manner to cues present in the developing rat brain.
  •  
7.
  • Lundberg, Cecilia, et al. (författare)
  • Differentiation of the RN33B Cell Line into Forebrain Projection Neurons after Transplantation into the Neonatal Rat Brain.
  • 2002
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 175:2, s. 370-387
  • Tidskriftsartikel (refereegranskat)abstract
    • The rat neural cell line RN33B has a remarkable ability to undergo region-specific neuronal differentiation after transplantation into the CNS. To further study its neurogenic properties in vivo, we used a recombinant lentiviral vector to genetically label the cells with the Green Fluorescent Protein (GFP) gene before implantation into the striatum/cortex, hippocampus, or mesencephalon of newborn rats. Three weeks after implantation, about 1-2% of the GFP-expressing cells had developed morphologies typical of neurons, astrocytes, or oligodendrocytes, the rest remained as either immature or undifferentiated nestin-positive cells. At 15-17 weeks postgrafting, the immature cells had disappeared in most graft recipients and only cells with neuronal or glial morphologies remained in similar numbers as at 3 weeks. The GFP distributed throughout the expressing cells, revealing fine morphological details, including dendrites with spines and extensive axonal projections. In all forebrain regions, the grafted cells differentiated into neurons with morphologies characteristic for each site, including large numbers of pyramidal-like cells in the cortex and the hippocampus, giving rise to dense projections to normal cortical target regions and to the contralateral hippocampus, respectively. In lower numbers, it was also possible to identify GFP-positive granulelike cells in the hippocampus, as well as densely spiny neurons in the striatum. In the mesencephalon by contrast, cells with astrocytic features predominated. The ability of the grafted RN33B cells to undergo region-specific differentiation into highly specialized types of forebrain projection neurons and establish connections with appropriate targets suggests that cues present in the microenvironment of the neonatal rat brain can effectively guide the development of immature progenitors, also in the absence of ongoing neurogenesis. (c) 2002 Elsevier Science (USA).
  •  
8.
  • Tønnesen, Jan, et al. (författare)
  • Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model.
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson's disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D(2) autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.
  •  
9.
  • Tønnesen, Jan, et al. (författare)
  • Optogenetic control of epileptiform activity.
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 106:29, s. 12162-12167
  • Tidskriftsartikel (refereegranskat)abstract
    • The optogenetic approach to gain control over neuronal excitability both in vitro and in vivo has emerged as a fascinating scientific tool to explore neuronal networks, but it also opens possibilities for developing novel treatment strategies for neurologic conditions. We have explored whether such an optogenetic approach using the light-driven halorhodopsin chloride pump from Natronomonas pharaonis (NpHR), modified for mammalian CNS expression to hyperpolarize central neurons, may inhibit excessive hyperexcitability and epileptiform activity. We show that a lentiviral vector containing the NpHR gene under the calcium/calmodulin-dependent protein kinase IIalpha promoter transduces principal cells of the hippocampus and cortex and hyperpolarizes these cells, preventing generation of action potentials and epileptiform activity during optical stimulation. This study proves a principle, that selective hyperpolarization of principal cortical neurons by NpHR is sufficient to curtail paroxysmal activity in transduced neurons and can inhibit stimulation train-induced bursting in hippocampal organotypic slice cultures, which represents a model tissue of pharmacoresistant epilepsy. This study demonstrates that the optogenetic approach may prove useful for controlling epileptiform activity and opens a future perspective to develop it into a strategy to treat epilepsy.
  •  
10.
  • Quintino, Luis, et al. (författare)
  • Automated quantification of neuronal swellings in a preclinical rodent model of Parkinson's disease detects region-specific changes in pathology
  • 2022
  • Ingår i: Journal of Neuroscience Methods. - : Elsevier BV. - 0165-0270. ; 378
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The development of axonal pathology is a key characteristic of many neurodegenerative disease such as Parkinson's disease and Alzheimer's disease. With advanced disease progression, affected axons do display several signs of pathology such as swelling and fragmentation. In the AAV vector-mediated alpha-synuclein overexpression model of Parkinson's disease, large (> 20 µm2) pathological swellings are prominent characteristics in cortical and subcortical structures. New method: This report describes a novel, macro-based workflow to quantify axonal pathology in the form of axonal swellings in the AAV vector-based alpha-synuclein overexpression model. Specifically, the approach is using background correction and thresholding before quantification of structures in 3D throughout a tissue stack. Results: The method was used to quantify TH and aSYN axonal swellings in the prefrontal cortex, striatum, and hippocampus. Regional differences in volume and number of axonal swellings were observed for both in TH and aSYN, with the striatum displaying the greatest signs of pathology. Comparison with existing methods: Existing methods for the quantification of axonal pathology do either rely on proprietary software or are based on manual quantification. The ImageJ workflow described here provides a method to objectively quantify axonal swellings both in volume and number. Conclusion: The method described can readily assess axonal pathology in preclinical rodent models of Parkinson's disease and can be easily adapted to other model systems and/or markers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy