SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURAL SCIENCES Biological Sciences Biophysics) ;lar1:(gu)"

Sökning: AMNE:(NATURAL SCIENCES Biological Sciences Biophysics) > Göteborgs universitet

  • Resultat 1-10 av 284
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Tapani, Sofia, 1982 (författare)
  • Stochastic modelling and analysis of early mouse development
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of this thesis is to model and describe dynamical events for biological cells using statistical and mathematical tools. The thesis includes five papers that all relate to stochastic modelling of cells. In order to understand the development and patterning of the early mammalian embryo, stochastic modelling has become a more important tool than ever. It allows for studying the processes that mediate the transition from pluripotency of the embryonic cells to their differentiation. It is still unclear whether the positions of cells determine their future fates. One alternative possibility is that cells are pre-specified at random positions and then sort according to a already set fate. Mouse embryonic cells are thought to be equivalent in their developmental properties until approaching the eight-cell stage. Some biological studies show, in comparison, that patterning can be present already at sperm entry and in the pronuclei migration. We investigate in Paper I the dynamics of the pronuclei migration by analysing their trajectories and find that not only do the pronuclei follow a noise corrupted path towards the centre of the egg but they also have some attraction to each other which affects their dynamics. Continuing in Paper II and III, we use these results to model this behaviour with a coupled stochastic differential equation model. This enables us to simulate distributions that describe the meeting plane between pronuclei which in turn can be related to the orientation of the first cleavage of the egg. Our results show that adding randomness in sperm entry point is different from the randomness added through the environment of the egg. We are also able to show that data sets with normal eggs and eggs treated with an actin growth inhibitor give rise to considerably different model dynamics, suggesting that the treatment is affecting the migration in an invasive way. Altering the pronuclei dynamics can alter the polarity of the egg and may transfer into the later axis-formation process. Invasiveness of experimental procedures is a difficult issue to handle. The alternative to invasive procedures is not appealing since it means that important developmental features may not be discovered because of individual variability and noise, leading to guesswork of the underlying mechanisms. The embryonic cells are easily affected by treatments performed to make the measuring, made by hand, easier or by the light exposure of the microscope. Treatments as such are used for example for producing flourescent proteins in membranes or slowing processes down. Paper IV and Paper V serve to analyse how light induced stress affects yeast cells and we employ a method for analysing the noisy non-stationary time series, which are a result of the yeast experiments, using wavelet decomposition.
  •  
3.
  • Gerlee, Philip, 1980, et al. (författare)
  • Scientific Models : Red Atoms, White Lies and Black Boxes in a Yellow Book
  • 2016
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • A zebrafish, the hull of a miniature ship, a mathematical equation and a food chain - what do these things have in common? They are examples of models used by scientists to isolate and study particular aspects of the world around us. This book begins by introducing the concept of a scientific model from an intuitive perspective, drawing parallels to mental models and artistic representations. It then recounts the history of modelling from the 16th century up until the present day. The iterative process of model building is described and discussed in the context of complex models with high predictive accuracy versus simpler models that provide more of a conceptual understanding. To illustrate the diversity of opinions within the scientific community, we also present the results of an interview study, in which ten scientists from different disciplines describe their views on modelling and how models feature in their work. Lastly, it includes a number of worked examples that span different modelling approaches and techniques. It provides a comprehensive introduction to scientific models and shows how models are constructed and used in modern science. It also addresses the approach to, and the culture surrounding modelling in different scientific disciplines. It serves as an inspiration for model building and also facilitates interdisciplinary collaborations by showing how models are used in different scientific fields. The book is aimed primarily at students in the sciences and engineering, as well as students at teacher training colleges but will also appeal to interested readers wanting to get an overview of scientific modelling in general and different modelling approaches in particular.
  •  
4.
  • Mamontov, Eugen, 1955 (författare)
  • Homeorhesis and evolutionary properties of living systems: From ordinary differential equations to the active-particle generalized kinetics theory
  • 2006
  • Ingår i: 10th Evolutionary Biology Meeting at Marseilles, 20-22 September 2006, Marseilles, France.
  • Konferensbidrag (refereegranskat)abstract
    • Advanced generalized-kinetic-theory (GKT) models for biological systems are developed for populations of active (or living) particles [1]-[5]. These particles are described with both the stochastic variables common in kinetic theory (such as time, the particle random location and velocity) and the stochastic variables related to the internal states of an active particle. Evolution of these states represents biological, ecological, or social properties of the particle behavior. Paper [6] analyzes a number of the well-known statistical-mechanics approaches and shows that the active-particle GKT (APGKT) is the only treatment capable of modelling living systems. Work [2] summarizes the significance of the notion of an active particle in kinetic models. This notion draws attention to the features distinguishing living matter from nonliving matter. They are discussed by many authors (e.g., [7]-[15], [1]-[3], [6], [16]-[18]). Work [11] considers a lot of differences between living and nonliving matters, and the limitations of the modelling approaches developed for nonliving matter. Work [6] mainly focuses on the comparison of a few theoretical mechanics treatments in terms of the key living-matter properties formulated in [15]. One of the necessary properties of the evolution of living systems is homeorhesis. It is, loosely speaking, a peculiar qualitative and quantitative insensitivity of a living system to the exogenous signals acting on it. The earlier notion, homeostasis, was introduced by W. B. Cannon in 1926 who discussed the phenomenon in detail later [7]. Homeorhesis introduced by C. H. Waddington [8, p. 32] generalizes homeostasis and is well known in biology [8], [9], [12]. It is an inherent part of mathematical models for oncogeny (e.g., [16]-[18], [6, Appendix]). Homeorhesis is also discussed in [3, Section 4] in connection with APGKT. Homeorhesis is documented in ecology (e.g., [11], [13, the left column on p. 675]) where it is one of the key notions of the strong Gaia theory, a version of the Gaia theory (e.g., [14, Chapter 8]). The strong Gaia theory “states that the planet with its life, a single living system, is regulated in certain aspects by that life” [14, p. 124]. The very origin of the name “Gaia” is related to homeorhesis or homeostasis [14, p. 118]. These notions are also used in psychology and sociology. If evolution of a system is not homeorhetic, the system can not be living. Work [6, Appendix] derives a preliminary mathematical formulation of homeorhesis in terms of the simplest dynamical systems, i.e. ordinary differential equations (ODEs). The present work complements, extended, and further specify the approach of [6, Appendix]. The work comprises the two main parts. The first part develops the sufficient conditions for ODE systems to describe homeorhesis, and suggests a fairly general structure of the ODE model. It regards homeorhesis as piecewise homeostasis. The model can be specified in different ways depending on specific systems and specific purposes of the analysis. An example of the specification is also noted (the PhasTraM nonlinear reaction-diffusion model for hyperplastic oncogeny [16]-[18]). The second part of the work discusses implementation of the above homeorhesis ODE model in terms of a special version [3] of APGKT (see above). The key feature of this version is that the components of a living population need not be discrete: the subdivision into the components is described with a general, continuous-discrete probability distribution (see also [6]). This enables certain properties of living matter noted in [15]. Moreover, the corresponding APGKT model presents a system of, firstly, a generalized kinetic equation for the conditional distribution function conditioned by the internal states of the population and, secondly, Ito's stochastic differential equations for these states. This treatement employs the results on nonstationary invariant diffusion stochastic processes [19]. The second part of the work also stresses that APGKT is substantially more important for the living-matter analysis than in the case of nonliving matter. One of the reasons is certain limitations in experimental sampling of the living-system modes presented with stochastic processes. A few directions for future research are suggested as well. REFERENCES: [1] Bellomo, N., Bellouquid, A. and Delitala, M., 2004, Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition, Math. Models Methods Appl. Sci., 14, 1683-1733. [2] Bellomo, N., 2006, New hot Paper Comments, Essential Science Indicators, http://www.esi-topics.com/nhp/2006 /may- 06-NicolaBellomo.html. [3] Willander, M., Mamontov, E. and Chiragwandi, Z., 2004, Modelling living fluids with the subdivision into the components in terms of probability distributions, Math. Models Methods Appl. Sci. 14, 1495-1520. [4] Bellomo, N. and Maini, P.K., 2005, Preface and the Special Issue “Multiscale Cancer Modelling-A New Frontier in Applied Mathematics”, Math. Models Methods Appl. Sci., 15, iii-viii. [5] De Angelis, E. and Delitala, M., 2006, Modelling complex systems in applied sciences: Methods and tools of the mathematical kinetic theory for active particles. Mathl Comput. Modelling, 43, 1310-1328. [6] Mamontov, E., Psiuk-Maksymowicz, K. and Koptioug, A., 2006, Stochastic mechanics in the context of the properties of living systems, Mathl Comput. Modelling, Article in Press, 13 pp. [7] Cannon, W.B., 1932, The Wisdom of the Body (New York: Norton). [8] Waddington, C.H., 1957, The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology (London, George Allen and Unwin). [9] Waddington, C.H., 1968, Towards a theoretical biology, Nature, 218, 525-527. [10] Cotnoir, P.-A., 1981, La compétence environnementale: Une affaire d’adaptation. Séminaire en écologie behaviorale, Univeristé du Québec, Montralé. Available online at: http://pac.cam.org/culture.doc . [11] O’Neill, R.V., DeAngelis, D.L., Waide, J.B. and Allen, T.F.H., 1986, A Hierarchical Concept of Ecosystems, Princeton: Princeton Univ. Press). [12] Sauvant, D., 1992, La modélisation systémique en nutrition, Reprod. Nutr. Dev., 32, 217-230. [13] Christensen, N.L., Bartuska, A.M., Brown, J.H., Carpenter, S., D'Antonio, C., Francis, R., Franklin, J.F., MacMahon, J.A., Noss, R.F., Parsons, D.J., Peterson, C.H., Turner, M.G. and Woodmansee, R.G., 1996, The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management, Ecological Applications, 6, 665-691. Available online at: http://www.esa.org/pao/esaPositions/Papers/ReportOfSBEM.php. [14] Margulis, L., 1998, Symbiotic Planet. A New Look at Evolution (Amherst: Sciencewriters). [15] Hartwell, L.H., Hopfield, J.J., Leibler, S. and Murray, A.W., 1999, From molecular to modular cell biology, Nature, 402, C47-C52. [16] Mamontov, E., Koptioug, A.V. and Psiuk-Maksymowicz, K., 2006, The minimal, phase-transition model for the cell- number maintenance by the hyperplasia-extended homeorhesis, Acta Biotheoretica, 54, 44 pp., (no. 2, May-June, accepted). [17] Psiuk-Maksymowicz, K. and Mamontov, E., 2005, The time-slices method for rapid solving the Cauchy problem for nonlinear reaction-diffusion equations in the competition of homeorhesis with genotoxically activated hyperplasia, In: European Conference on Mathematical and Theoretical Biology - ECMTB05 (July 18-22, 2005) Book of Abstracts, Vol.1 (Dresden: Center for Information Services and High Performance Computing, Dresden Univ. Technol.), p. 429 (http://www.ecmtb05.org/). [18] Psiuk-Maksymowicz, K. and Mamontov, E., 2006, The homeorhesis-based modelling and fast numerical analysis for oncogenic hyperplasia under radiation therapy, submitted. [19] Mamontov, E., 2005, Nonstationary invariant distributions and the hydrodynamic-style generalization of the Kolmogorov-forward/Fokker-Planck equation, Appl. Math. Lett. 18 (9) 976-982.
  •  
5.
  • Mamontov, Eugen, 1955 (författare)
  • Ordinary differential equation system for population of individuals and the corresponding probabilistic model
  • 2008
  • Ingår i: Mathl. Computer Modelling. - : Elsevier BV. - 0895-7177.
  • Tidskriftsartikel (refereegranskat)abstract
    • The key model for particle populations in statistical mechanics is the Bogolyubov–Born– Green–Kirkwood–Yvon (BBGKY) equation chain. It is derived mainly from the Hamilton ordinary differential equation (ODE) system for the vectors of the particle states in the particle position-momentum phase space. Many problems beyond physics or chemistry, for instance, in the living-matter sciences (biology, medicine, ecology, and scoiology) make it necessary to extend the notion of a particle to an individual, or active particle. This challenge is met by the generalized kinetic theory. It implements the extension by extending the phase space from the space of the position-momentum vectors to more rich spaces formed by the state vectors with the entries which need not be limited to the entries of the position and momentum: they include other scalar variables (e.g., those associated with modelling homeorhesis or other features inherent to the individuals). One can assume that the dynamics of the state vector in the extended space, i.e. the states of the individuals (rather than common particles) is also described by an ODE system. The latter, however, need not be the Hamilton one. The question is how one can derive the analogue of the BBGKY paradigm for the new settings. The present work proposes an answer to this question. It applies a very limited number of carefully selected tools of probability theory and common statistical mechanics. It in particular uses the well-known feature that the maximum number of the individuals which can mutually interact simultaneously is bounded by a fixed value of a few units. The present approach results in the finite system of equations for the reduced many-individual distribution functions thereby eliminating the so-called closure problem inevitable in the BBGKY theory. The thermodynamic-limit assumption is not needed either. The system includes consistently derived terms of all of the basic types known in kinetic theory, in particular, both the “mean-field” and scattering-integral terms, and admits the kinetic equation of the form allowing a direct chemical-reaction reading. The present approach can deal with Hamilton’s equation systems which are nonmonogenic and not treated in statistical mechanics. The proposed modelling suggests the basis of the generalized kinetic theory and may serve as the stochastic mechanics of population of individuals.
  •  
6.
  • Trigo, João Pedro, 1995, et al. (författare)
  • In vitro digestibility and Caco-2 cell bioavailability of sea lettuce (Ulva fenestrata) proteins extracted using pH-shift processing
  • 2021
  • Ingår i: Food Chemistry. - : Elsevier BV. - 0308-8146 .- 1873-7072. ; 356
  • Tidskriftsartikel (refereegranskat)abstract
    • Seaweed is a promising sustainable source of vegan protein as its farming does not require arable land, pesticides/insecticides, nor freshwater supply. However, to be explored as a novel protein source the content and nutritional quality of protein in seaweed need to be improved. We assessed the influence of pH-shift processing on protein degree of hydrolysis (%DH), protein/peptide size distribution, accessibility, and cell bioavailability of Ulva fenestrata proteins after in vitro gastrointestinal digestion. pH-shift processing of Ulva, which concentrated its proteins 3.5-times, significantly improved the %DH from 27.7±2.6% to 35.7±2.1% and the amino acid accessibility from 56.9±4.1% to 72.7±0.6%. Due to the higher amino acid accessibility, the amount of most amino acids transported across the cell monolayers was higher in the protein extracts. Regarding bioavailability, both Ulva and protein extracts were as bioavailable as casein. The protein/peptide molecular size distribution after digestion did not disclose a clear association with bioavailability.
  •  
7.
  •  
8.
  • Lorentzon, Emma, 1995, et al. (författare)
  • Effects of the toxic metals arsenite and cadmium on α-synuclein aggregation in vitro and in cells
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure to heavy metals, including arsenic and cadmium, is associated with neurodegen-erative disorders such as Parkinson’s disease. However, the mechanistic details of how these metals contribute to pathogenesis are not well understood. To search for underlying mechanisms involving α-synuclein, the protein that forms amyloids in Parkinson’s disease, we here assessed the effects of arsenic and cadmium on α-synuclein amyloid formation in vitro and in Saccharomyces cerevisiae (budding yeast) cells. Atomic force microscopy experiments with acetylated human α-synuclein demonstrated that amyloid fibers formed in the presence of the metals have a different fiber pitch compared to those formed without metals. Both metal ions become incorporated into the amyloid fibers, and cadmium also accelerated the nucleation step in the amyloid formation process, likely via binding to intermediate species. Fluorescence microscopy analyses of yeast cells expressing fluorescently tagged α-synuclein demonstrated that arsenic and cadmium affected the distribution of α-synuclein aggregates within the cells, reduced aggregate clearance, and aggravated α-synuclein toxicity. Taken together, our in vitro data demonstrate that interactions between these two metals and α-synuclein modulate the resulting amyloid fiber structures, which, in turn, might relate to the observed effects in the yeast cells. Whilst our study advances our understanding of how these metals affect α-synuclein biophysics, further in vitro characterization as well as human cell studies are desired to fully appreciate their role in the progression of Parkinson’s disease.
  •  
9.
  • Wu, Min, 1986, et al. (författare)
  • Proline 411 biases the conformation of the intrinsically disordered plant UVR8 photoreceptor C27 domain altering the functional properties of the peptide
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • UVR8 (UV RESISTANCE LOCUS 8) is a UV-B photoreceptor responsible for initiating UV-B signalling in plants. UVR8 is a homodimer in its signalling inactive form. Upon absorption of UV radiation, the protein monomerizes into its photoactivated state. In the monomeric form, UVR8 binds the E3 ubiquitin ligase COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1), triggering subsequent UV-B-dependent photomorphogenic development in plants. Recent in vivo experiments have shown that the UVR8 C-terminal region (aa 397-423; UVR8(C27)) alone is sufficient to regulate the activity of COP1. In this work, CD spectroscopy and NMR experiments showed that the UVR8(C27) domain was non-structured but gained secondary structure at higher temperatures leading to increased order. Bias-exchange metadynamics simulations were also performed to evaluate the free energy landscape of UVR8(C27). An inverted free energy landscape was revealed, with a disordered structure in the global energy minimum. Flanking the global energy minimum, more structured states were found at higher energies. Furthermore, stabilization of the low energy disordered state was attributed to a proline residue, P411, as evident from P411A mutant data. P411 is also a key residue in UVR8 binding to COP1. UVR8(C27) is therefore structurally competent to function as a molecular switch for interaction of UVR8 with different binding partners since at higher free energies different structural conformations are being induced in this peptide. P411 has a key role for this function.
  •  
10.
  • Ermund, Anna, et al. (författare)
  • The normal trachea is cleaned by MUC5B mucin bundles from the submucosal glands coated with the MUC5AC mucin
  • 2017
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 492:3, s. 331-337
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the mucociliary clearance system, mucins were visualized by light, confocal and electron microscopy, and mucus was stained by Alcian blue and tracked by video microscopy on tracheal explants of newborn piglets. We observed long linear mucus bundles that appeared at the submucosal gland openings and were transported cephalically. The mucus bundles were shown by mass spectrometry and immunostaining to have a core made of MUC5B mucin and were coated with MUC5AC mucin produced by surface goblet cells. The transport speed of the bundles was slower than the airway surface liquid flow. We suggest that the goblet cell MUC5AC mucin anchors the mucus bundles and thus controls their transport. Normal clearance of the respiratory tree of pigs and humans, both rich in submucosal glands, is performed by thick and long mucus bundles. (C) 2017 The Authors. Published by Elsevier Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 284
Typ av publikation
tidskriftsartikel (235)
konferensbidrag (22)
forskningsöversikt (14)
doktorsavhandling (7)
samlingsverk (redaktörskap) (2)
bokkapitel (2)
visa fler...
bok (1)
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (257)
övrigt vetenskapligt/konstnärligt (27)
Författare/redaktör
Goksör, Mattias, 197 ... (21)
Adiels, Caroline B., ... (18)
Billeter, Martin, 19 ... (15)
Westerlund, Fredrik, ... (14)
Orekhov, Vladislav, ... (13)
Fritzsche, Joachim, ... (11)
visa fler...
Hansson, Örjan, 1955 (11)
Höök, Fredrik, 1966 (10)
Katona, Gergely, 197 ... (10)
Ambjörnsson, Tobias (10)
Neutze, Richard, 196 ... (10)
Karlsson, B Göran, 1 ... (9)
Westenhoff, Sebastia ... (9)
Brändén, Gisela, 197 ... (8)
Ericson, Marica B, 1 ... (8)
Tegenfeldt, Jonas (7)
Bally, Marta, 1981 (7)
Nyberg, Lena, 1979 (7)
Eriksson, Leif A, 19 ... (7)
Mamontov, Eugen, 195 ... (7)
Müller, Vilhelm, 199 ... (7)
Mayzel, Maxim (6)
Fredriksson, Jonas, ... (6)
Volpe, Giovanni, 197 ... (6)
Mehlig, Bernhard, 19 ... (6)
Cvijovic, Marija, 19 ... (6)
Werner, Erik (6)
Friemann, Rosmarie, ... (6)
Davidsson, Jan (6)
Andersson, Rebecka, ... (6)
Burmann, Björn Marcu ... (6)
Wahlgren, Weixiao Yu ... (6)
Rydell, Gustaf E (6)
Block, Stephan, 1978 (6)
Pedersen, Anders, 19 ... (6)
Claesson, Elin, 1989 (6)
Kristiansson, Erik, ... (5)
Abbaszadehbanaeiyan, ... (5)
Ahmadpour, Doryaneh, ... (5)
Dalsbecker, Philip, ... (5)
Grøtli, Morten, 1966 (5)
Staykova, Doroteya (5)
Ambjörnsson, Tobias, ... (5)
Midtvedt, Daniel (5)
Dods, Robert, 1989 (5)
Båth, Petra, 1988 (5)
Wickstrand, Cecilia (5)
Pilon, Marc, 1966 (5)
Farkas, Daniel, 1980 (5)
Gustavsson, Anna-Kar ... (5)
visa färre...
Lärosäte
Chalmers tekniska högskola (90)
Lunds universitet (28)
Uppsala universitet (20)
Karolinska Institutet (18)
Kungliga Tekniska Högskolan (8)
visa fler...
Linköpings universitet (8)
Umeå universitet (7)
Stockholms universitet (5)
Sveriges Lantbruksuniversitet (5)
Linnéuniversitetet (4)
RISE (4)
Örebro universitet (2)
Högskolan i Borås (2)
Luleå tekniska universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (284)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (284)
Medicin och hälsovetenskap (84)
Teknik (31)
Lantbruksvetenskap (2)
Samhällsvetenskap (2)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy