SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURAL SCIENCES Biological Sciences Biophysics) ;pers:(Caleman Carl)"

Sökning: AMNE:(NATURAL SCIENCES Biological Sciences Biophysics) > Caleman Carl

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Caleman, Carl, et al. (författare)
  • Radiation damage in biological material : electronic properties and electron impact ionization in urea
  • 2009
  • Ingår i: Europhysics letters. - : IOP. - 0295-5075 .- 1286-4854. ; 85:1, s. 18005-
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiation damage is an unavoidable process when performing structural investigations of biological macromolecules with X-rays. In crystallography this process can be limited through damage distribution in a crystal, while for single molecular imaging it can be outrun by employing short intense pulses. Secondary electron generation is crucial during damage formation and we present a study of urea, as model for biomaterial. From first principles we calculate the band structure and energy loss function, and subsequently the inelastic electron cross-section in urea. Using Molecular Dynamics simulations, we quantify the damage and study the magnitude and spatial extent of the electron cloud coming from an incident electron, as well as the dependence with initial energy.
  •  
2.
  • Seibert, M. Marvin, et al. (författare)
  • Single mimivirus particles intercepted and imaged with an X-ray laser
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 470:7332, s. 78-81
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions(1-4). Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma(1). The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval(2). Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a noncrystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source(5). Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
  •  
3.
  • Aquila, Andrew, et al. (författare)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
4.
  • Koopmann, Rudolf, et al. (författare)
  • In vivo protein crystallization opens new routes in structural biology
  • 2012
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 9:3, s. 259-262
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
  •  
5.
  • Jönsson, H. Olof, 1985- (författare)
  • Femtosecond Dynamics in Water and Biological Materials with an X-Ray Laser
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Using high intensity ultrashort pulses from X-ray free electron lasers to investigate soft matter is a recent and successful development. The last decade has seen the development of new variant of protein crystallography with femtosecond dynamics, and single particle imaging with atomic resolution is on the horizon. The work presented here is part of the effort to explain what processes influence the capability to achieve high resolution information in these techniques. Non-local thermal equilibrium plasma continuum modelling is used to predict signal changes as a function of pulse duration, shape and energy. It is found that ionization is the main contributor to radiation damage in certain photon energy and intensity ranges, and diffusion depending on heating is dominant in other scenarios. In femtosecond protein crystallography, self-gating of Bragg diffraction is predicted to quench the signal from the latest parts of an X-ray pulse. At high intensities ionization is dominant and the last part of the pulse will contain less information at low resolution. At lower intensities, displacement will dominate and high resolution information will be gated first. Temporal pulse shape is also an important factor. The difference between pulse shapes is most prominent at low photon energy in the form of a general increase or decrease in signal, but the resolution dependance is most prominent at high energies. When investigating the X-ray scattering from water a simple diffusion model can be replaced by a molecular dynamics simulation, which predicts structural changes in water on femtosecond timescales. Experiments performed at LCLS are presented that supports the simulation results on structural changes that occur in the solvent during the exposure.
  •  
6.
  • Sinelnikova, Anna, et al. (författare)
  • Reproducibility in the unfolding process of protein induced by an external electric field
  • 2021
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 12:6, s. 2030-2038
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of proteins are crucial for their function. However, commonly used techniques for studying protein structures are limited in monitoring time-resolved dynamics at high resolution. Combining electric fields with existing techniques to study gas phase proteins, such as Single Particle Imaging using Free-electron Lasers and gas phase Small Angle X-ray Scattering, has the potential to open up a new era in time-resolved studies of gas phase protein dynamics. Using molecular dynamics simulations, we identify well-defined unfolding pathways of a protein, induced by experimentally achievable external electric fields. Our simulations show that strong electric fields in conjunction with short pulsed X-ray sources such as Free-electron Lasers can be a new path for imaging dynamics of gas-phase proteins at high spatial and temporal resolution.
  •  
7.
  • Chapman, Henry N., et al. (författare)
  • Diffraction before destruction
  • 2014
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 369:1647, s. 20130313-
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers have opened up the possibility of structure determination of protein crystals at room temperature, free of radiation damage. The femtosecond-duration pulses of these sources enable diffraction signals to be collected from samples at doses of 1000 MGy or higher. The sample is vaporized by the intense pulse, but not before the scattering that gives rise to the diffraction pattern takes place. Consequently, only a single flash diffraction pattern can be recorded from a crystal, giving rise to the method of serial crystallography where tens of thousands of patterns are collected from individual crystals that flow across the beam and the patterns are indexed and aggregated into a set of structure factors. The high-dose tolerance and the many-crystal averaging approach allow data to be collected from much smaller crystals than have been examined at synchrotron radiation facilities, even from radiation-sensitive samples. Here, we review the interaction of intense femtosecond X-ray pulses with materials and discuss the implications for structure determination. We identify various dose regimes and conclude that the strongest achievable signals for a given sample are attained at the highest possible dose rates, from highest possible pulse intensities.
  •  
8.
  • Kim, Seonmyeong, et al. (författare)
  • Observing ice structure of micron-sized vapor-deposited ice with an x-ray free-electron laser
  • 2023
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The direct observation of the structure of micrometer-sized vapor-deposited ice is performed at Pohang Accelerator Laboratory x-ray free electron laser (PAL-XFEL). The formation of micrometer-sized ice crystals and their structure is important in various fields, including atmospheric science, cryobiology, and astrophysics, but understanding the structure of micrometer-sized ice crystals remains challenging due to the lack of direct observation. Using intense x-ray diffraction from PAL-XFEL, we could observe the structure of micrometer-sized vapor-deposited ice below 150 K with a thickness of 2-50 μm grown in an ultrahigh vacuum chamber. The structure of the ice grown comprises cubic and hexagonal sequences that are randomly arranged to produce a stacking-disordered ice. We observed that ice with a high cubicity of more than 80% was transformed to partially oriented hexagonal ice when the thickness of the ice deposition grew beyond 5 μm. This suggests that precise temperature control and clean deposition conditions allow μm-thick ice films with high cubicity to be grown on hydrophilic Si3N4 membranes. The low influence of impurities could enable in situ diffraction experiments of ice nucleation and growth from interfacial layers to bulk ice.
  •  
9.
  • Jönsson, H. Olof, et al. (författare)
  • Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission
  • 2017
  • Ingår i: IUCrJ. - 2052-2525. ; 4:6, s. 778-784
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.
  •  
10.
  • Jönsson, Olof, 1985- (författare)
  • Ultrafast Structural and Electron Dynamics in Soft Matter Exposed to Intense X-ray Pulses
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Investigations of soft matter using ultrashort high intensity pulses have been made possible through the advent of X-ray free-electrons lasers. The last decade has seen the development of a new type of protein crystallography where femtosecond dynamics can be studied, and single particle imaging with atomic resolution is on the horizon. The pulses are so intense that any sample quickly turns into a plasma. This thesis studies the ultrafast transition from soft matter to warm dense matter, and the implications for structural determination of proteins.                   We use non-thermal plasma simulations to predict ultrafast structural and electron dynamics. Changes in atomic form factors due to the electronic state, and displacement as a function of temperature, are used to predict Bragg signal intensity in protein nanocrystals. The damage processes started by the pulse will gate the diffracted signal within the pulse duration, suggesting that long pulses are useful to study protein structure. This illustrates diffraction-before-destruction in crystallography.The effect from a varying temporal photon distribution within a pulse is also investigated. A well-defined initial front determines the quality of the diffracted signal. At lower intensities, the temporal shape of the X-ray pulse will affect the overall signal strength; at high intensities the signal level will be strongly dependent on the resolution.Water is routinely used to deliver biological samples into the X-ray beam. Structural dynamics in water exposed to intense X-rays were investigated with simulations and experiments. Using pulses of different duration, we found that non-thermal heating will affect the water structure on a time scale longer than 25 fs but shorter than 75 fs. Modeling suggests that a loss of long-range coordination of the solvation shells accounts for the observed decrease in scattering signal.The feasibility of using X-ray emission from plasma as an indicator for hits in serial diffraction experiments is studied. Specific line emission from sulfur at high X-ray energies is suitable for distinguishing spectral features from proteins, compared to emission from delivery liquids. We find that plasma emission continues long after the femtosecond pulse has ended, suggesting that spectrum-during-destruction could reveal information complementary to diffraction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
tidskriftsartikel (12)
doktorsavhandling (3)
licentiatavhandling (2)
annan publikation (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Timneanu, Nicusor (9)
Mandl, Thomas (5)
Sinelnikova, Anna (5)
Marklund, Erik, Tekn ... (4)
Hajdu, Janos (4)
visa fler...
Andreasson, Jakob (4)
Martin, Andrew V. (4)
Chapman, Henry N. (4)
Grånäs, Oscar, 1979- (3)
Aquila, Andrew (3)
Graafsma, Heinz (3)
Hirsemann, Helmut (3)
Erk, Benjamin (3)
Rudenko, Artem (3)
Rolles, Daniel (3)
Seibert, M Marvin (3)
Bogan, Michael J. (3)
Shoeman, Robert L (3)
Doak, R Bruce (3)
Foucar, Lutz (3)
Hartmann, Robert (3)
Rudek, Benedikt (3)
Barty, Anton (3)
Maia, Filipe R. N. C ... (3)
Fromme, Petra (3)
White, Thomas A. (3)
Bajt, Saša (3)
Barthelmess, Miriam (3)
Bostedt, Christoph (3)
Bozek, John D. (3)
Coppola, Nicola (3)
DePonte, Daniel P. (3)
Epp, Sascha W. (3)
Gumprecht, Lars (3)
Hampton, Christina Y ... (3)
Holl, Peter (3)
Kimmel, Nils (3)
Liang, Mengning (3)
Lomb, Lukas (3)
Reich, Christian (3)
Schlichting, Ilme (3)
Schulz, Joachim (3)
Soltau, Heike (3)
Stern, Stephan (3)
Ullrich, Joachim (3)
Weidenspointner, Geo ... (3)
Weierstall, Uwe (3)
Spence, John C. H. (3)
Brodmerkel, Maxim N. (3)
visa färre...
Lärosäte
Uppsala universitet (18)
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy