SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURAL SCIENCES Biological Sciences Biophysics) ;pers:(Gräslund Astrid Professor)"

Sökning: AMNE:(NATURAL SCIENCES Biological Sciences Biophysics) > Gräslund Astrid Professor

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Österlund, Nicklas, 1992- (författare)
  • Capturing transient peptide assemblies associated with Alzheimer's disease : Native mass spectrometry studies of amyloid-β oligomerization
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Correct folding of proteins is essential for maintaining a functional living cell. Misfolding and aggregation of proteins, where non-native intermolecular interactions form large and highly ordered amyloid aggregates with low free energy, is hence associated with multiple diseases. One example is Alzheimer’s disease (AD) where the Amyloid-β (Aβ) peptide aggregates into amyloid fibrils, which deposit as neuritic plaques in the brains of AD patients. Nucleation of amyloid fibrils takes place via formation of smaller pre-nucleation clusters, so-called oligomers, which are considered to be especially toxic and are therefore potentially important in AD pathology. Detailed mechanistic molecular knowledge of Aβ aggregation is important for design of AD treatments that target these processes. The oligomeric species are however challenging to study experimentally due to their low abundance and high polydispersity.  Aβ oligomers are in this thesis studied under controlled in vitro conditions using bottom-up biophysics. Highly pure recombinant Aβ peptides are studied, primarily using native ion-mobility mass spectrometry, to monitor the spontaneous formation of oligomers in aqueous solution. Mass spectrometry is capable of resolving individual oligomeric states, while ion mobility provides low-resolution structure information. This is complemented with other biophysical techniques, as well as theoretical modeling. The oligomers are also studied upon modulating intrinsic factors, such as peptide length and sequence, or extrinsic factors, such as the chemical environment. Interactions with two important biological interaction partners are studied: chaperone proteins and cell membranes.  We show how Aβ oligomers assemble, and form extended structures which may be linked to continued growth into amyloid fibrils. We also show how different amyloid chaperone proteins interact with growing aggregates, which modifies and delays the aggregation process. These interactions are shown to depend on specific sequence-motifs in the chaperones and client peptides. Membrane-mimicking micelles are on the other hand able to stabilize globular compact forms of the Aβ oligomers and to inhibit the formation of extended structures which nucleate into amyloid fibrils. This may contribute to enrichment of toxic species in vivo. Interactions with membrane-mimicking systems are shown to be highly dependent on both the Aβ peptide isoform and the properties of the membrane environment, such as headgroup charges. It is also demonstrated how addition of a designed small peptide construct can inhibit formation of Aβ oligomers in the membrane environment. 
  •  
2.
  • Karjalainen, Eeva-Liisa, 1980- (författare)
  • The choreography of protein vibrations : Improved methods of observing and simulating the infrared absorption of proteins
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work presented in this thesis has striven toward improving the capability to study proteins using infrared (IR) spectroscopy. This includes development of new and improved experimental and theoretical methods to selectively observe and simulate protein vibrations.A new experimental method of utilising adenylate kinase and apyrase as helper enzymes to alter the nucleotide composition and to perform isotope exchange in IR samples was developed. This method enhances the capability of IR spectroscopy by enabling increased duration of measurement time, making experiments more repeatable and allowing investigation of partial reactions and selected frequencies otherwise difficult to observe. The helper enzyme mediated isotope exchange allowed selective observation of the vibrations of the catalytically important phosphate group in a nucleotide dependent protein such as the sarcoplasmic reticulum Ca2+-ATPase. This important and representative member of P-type ATPases was further investigated in a different study, where a pathway for the protons countertransported in the Ca2+-ATPase reaction cycle was proposed based on theoretical considerations. The transport mechanism was suggested to involve separate pathways for the ions and the protons.Simulation of the IR amide I band of proteins enables and supports structure-spectra correlations. The characteristic stacking of beta-sheets observed in amyloid structures was shown to induce a band shift in IR spectra based on simulations of the amide I band. The challenge of simulating protein spectra in aqueous medium was also addressed in a novel approach where optimisation of simulated spectra of a large set of protein structures to their corresponding experimental spectra was performed. Thereby, parameters describing the most important effects on the amide I band for proteins could be determined. The protein spectra predicted using the optimised parameters were found to be well in agreement with experiment.
  •  
3.
  •  
4.
  • Björnerås, Johannes, 1982- (författare)
  • Dynorphin A – Interactions with receptors and the membrane bilayer
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work presented in this thesis concerns the dynorphin neuropeptides, and dynorphin A (DynA) in particular. DynA belongs to the wider class of typical opioid peptides that, together with the opioid receptors, a four-membered family of GPCR membrane proteins, form the opioid system. This biological system is involved or implicated in several physiological processes such as analgesia, addiction and depression, and effects caused by DynA through this system, mainly through interaction with the kappa subtype of the opioid receptors (KOR), are called the opioid effects. In addition to this, non-opioid routes of action for DynA have been proposed, and earlier studies have shown that direct membrane interaction is likely to contribute to these non-opioid effects. The results discussed here fall into either of two categories; the interaction between DynA and a fragment of KOR, and the direct lipid interaction of DynA and two variant peptides.For the receptor interaction case, DynA most likely causes its physiological effects through binding its N-terminal into a transmembrane site of the receptor protein, while the extracellular regions of the protein, in particular the extracellular loop II (EL2), have been shown to be important for modulating the selectivity of KOR for DynA. Here we have focussed on the EL2, and show the feasibility of transferring this sequence into a soluble protein scaffold. Studies, predominantly by nuclear magnetic resonance (NMR) spectroscopy, of EL2 in this new environment show that the segment has the conformational freedom expected of a disordered loop sequence, while the scaffold keeps its native beta-barrel fold. NMR chemical shift and paramagnetic resonance enhancement experiments show that DynA binds with high specificity to EL2 with a dissociation constant of approximately 30 micro Molar, while binding to the free EL2 peptide is an order of magnitude weaker. The strength of these interactions are reasonable for a receptor recognition event. No binding to the naked scaffold protein is observed.In the second project, the molecules of interest were two DynA peptide variants recently found in humans and linked to a neurological disorder. Previously published reports from our group and collaborators pointed at very different membrane-perturbing properties for the two variants, and here we present the results of a follow-up study, where the variants R6W-DynA and L5S-DynA were studied by NMR and circular dichroism (CD) spectroscopy in solutions of fast-tumbling phospholipid bicelles, and compared with wild type DynA. Our results show that R6W-DynA interacts slightly stronger with lipids compared to wild type DynA, and much stronger compared to L5S-DynA, in terms of bicelle association, penetration and structure induction. These results are helpful for explaining the differences in toxicity, membrane perturbation and relationship to disease, between the studied neuropeptides.
  •  
5.
  • Björnerås, Johannes, 1982- (författare)
  • The opioid peptide dynorphin A : Biophysical studies of peptide–receptor and peptide–membrane interactions
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work presented in this thesis concerns the opioid peptide dynorphin A (DynA). DynA functions primarily as a neurotransmitter and belongs to the family of typical opioid peptides. These peptides are a part of the opioid system, together with the opioid receptors, a family of GPCR membrane proteins. The opioid system system is involved or implicated in several physiological processes such as analgesia, addiction, depression and other types of neurological disorders. In this thesis, two biologically relevant aspects of DynA have been investigated with biophysical methods. First, interactions between DynA and an opioid receptor, and second, the direct membrane interactions of DynA.The DynA–receptor studies were focused on the selectivity-modulating second extracellular loop (EL2) of the kappa-opioid receptor (KOR). A protein engineering approach was used in which the EL2 was grafted onto a soluble protein scaffold. The results show that DynA binds with low affinity but high specificity to EL2 in the construct protein environment. The strength of the interaction is in the micromolar range, and we argue that this interaction is part of the receptor recognition event.With bicelles as a mimetic, membrane interactions were probed for wild-type DynA and for two DynA peptide variants linked to a neurological disorder. R6W–DynA and L5S–DynA were shown to be very different in terms of bicelle association, penetration and structure induction. In these experiments, as well as in investigations of DynA dynamics in bicelles, the lipid environment was shown to have much larger effects on peptide dynamics than on structure; and both these properties depend on lipid charge.Additionally, in a methodological project, DHPC/DMPC bicelle morphology as a function of total PC concentration was characterised by diffusion NMR in combination with two-way decomposition. The results may contribute to providing guidelines for the appropriate use of bicelles as a membrane mimetic.
  •  
6.
  • Danielsson, Jens, 1968- (författare)
  • NMR studies of the amyloid beta-peptide
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Amyloid beta peptide (Ab) is related to Alzheimer’s disease and is suggested to be the molecular pathogenic species of the disease, probably through the neurotoxic effect of Ab oligomers. Here the results from biophysical studies of Ab and fragments thereof, are presented. Pulsed field gradient NMR diffusion experiments show that Ab exists mainly as an unfolded monomer. In addition, the hydrodynamic radius of Ab suggests that Ab has residual secondary structure propensities. CD experiments reveal that Ab has a high propensity to adopt a polyproline type II (PII) helix at low temperature. NMR diffusion measurements as well as the 3JHNH values show that increasing the temperature from 4 C induces a structure transition from PII propensity to a beta strand propensity around 15 C and to a random coil conformation at higher temperature. The small hydrodynamic radius at low temperature may be explained by the presence of a population of a hairpin conformation as was suggested by MD simulations. 15N relaxation and secondary chemical shifts suggest that Ab consists of 6 structural regions, two regions with high PII propensity are separated by a highly mobile region located in the N-terminal part of the peptide. In the C-terminal part two regions with a propensity to adopt b-strand are located, separated by a mobile region. The structural propensities of soluble monomeric Ab agree well with the structure of the peptide in fibril aggregates as well as in SDS micelles. Ab binds zinc specifically and with high affinity. This interaction was studied using heteronuclear correlation experiments. The metal ligands were determined to be three histidines, 6,13 and 14 and the N-terminus. The Ab peptide also binds b-cyclodextrin and the combined use of NMR diffusion experiments and induced chemical shifts show that Ab has at least two binding sites for b-cyclodextrin, and the dissociation constants of these binding sites were determined.
  •  
7.
  • Hugonin, Loïc, 1978- (författare)
  • Spectroscopic studies of dynorphin neuropeptides and the amyloid beta-peptide : The consequences of biomembrane interactions
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Dynorphin A, dynorphin B and big dynorphin are endogenous opioid neuropeptides. They play an important role in a wide variety of physiological functions such as regulation of pain processing and memory acquisition. Such actions are generally mediated through the κ-receptors. Besides opioid receptor interactions, dynorphins have non-opioid physiological activities which result in excitotoxic effects in neuropathic pain, spinal cord and brain injury. In order to gain insight into the mechanisms of the non-opioid interactions of dynorphins with the cell, spectroscopic membrane-interaction studies were performed. We demonstrated that big dynorphin and dynorphin A, but not dynorphin B, penetrated into cells. All dynorphins interact with the membrane model systems with weak membrane-induced secondary structure. Big dynorphin and dynorphin A induce membrane perturbation, calcein leakage and cause permeability of the membrane to calcium in large unilamellar vesicles (LUV). But dynorphins do not translocate in the LUV membrane model system and there is a strong electrostatic contribution to the interaction of the peptides with the membrane bilayer.In the second part of this thesis we investigated the amyloid β(1-40) peptide (Aβ). This peptide is related to Alzheimer’s disease and its soluble oligomeric aggregates are reported to contribute to the pathology of the disease. In order to provide better insight into the aggregation processes we examined the membrane interaction of Aβ in a model system. Gradual addition of small amounts of sodium dodecyl sulfate to an aqueous solution gives rise to a secondary structure conversion of Aβ peptide. The conversion can be described as a two state process, from random coil to β-sheet with formation of high molecular mass complexes between peptide and detergent, possibly mimicking the behavior of the peptide when aggregating at a cell membrane surface. At high detergent concentrations there is a transition from β-sheet to α-helix conformation.
  •  
8.
  • Madani, Fatemeh, 1978- (författare)
  • Biophysical studies of peptides with functions in biotechnology and biology
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • My thesis concerns spectroscopic studies (NMR, CD and fluorescence) of peptides with functions in biotechnology and biology, and their interactions with a model membrane (large unilamellar phospholipid vesicles).The resorufin-based arsenical hairpin binder (ReAsH) bound to a short peptide is a useful fluorescent tag for genetic labeling of proteins in living cells. A hairpin structure with some resemblance to type II β-turn was determined by NMR structure calculations (Paper I).Cell-penetrating peptides (CPPs) are short (30-35 residues), often rich in basic amino acids such as Arg. They can pass through the cell membrane and deliver bioactive cargoes, making them useful for biotechnical and pharmacological applications. The mechanisms of cellular uptake and membrane translocation are under debate. Understanding the mechanistic aspects of CPPs is the major focus of Papers II, III, and IV.The effect of the pyrenebutyrate (PB) on the cellular uptake, membrane translocation and perturbation of several CPPs from different subgroups was investigated (Paper II). We concluded that both charge and hydrophobicity of the CPP affect the cellular uptake and membrane translocation efficiency.Endosomal escape is a crucial challenge for the CPP applications. We modeled the endosome and endosomal escape for different CPPs to investigate the corresponding molecular mechanisms (Papers III and IV). Hydrophobic CPPs were able to translocate across the model membrane in the presence of a pH gradient, produced by bacteriorhodopsin proton pumping, whereas a smaller effect was observed for hydrophilic CPPs.Dynorphin A (Dyn A) peptide mutations are associated with neurodegenerative disorders, without involvement of the opioid receptors. The non-opioid activities of Dyn A may involve membrane perturbations. Model membrane-perturbations by three Dyn A mutants were investigated (Paper V). The results showed effects to different degrees largely in accordance with their neurotoxic effects.
  •  
9.
  • Papadopoulos, Evangelos, 1975- (författare)
  • Structural and functional studies of biomolecules with NMR and CD spectroscopy.
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Experimentally derived biomolecular structures were determined by Nuclear Magnetic Resonance (NMR). The properties of selected peptides and proteins in solution and in membrane mimicking micelles were observed by circular Dichroism (CD), mass spectrometry (MS), and other spectroscopic techniques.The mDpl(1-30) peptide (30 residues) of the mouse Doppel protein was found to be positioned as an α-helix in a DHPC micelle. The same peptide can disrupt and cause leakage in small unilamellar vesicles.Single D-amino acid isomers of Trp-cage (20 residues), the smallest peptide with a protein-like fold, were analyzed by CD spectroscopy and were found to have different secondary structures and melting temperatures. They were compared against MS measurements specially designed to reveal the secondary structure of proteins.We studied a novel protein in E. coli of unknown structure that is encoded by the putative transcription factor ORF: ygiT (131 residues). This protein comprises a helix-turn-helix (HTH) domain in the C-terminus and contains two CxxC motives in the N-terminal domain, which binds Zn. This protein was named 2CxxC. We succeeded in overexpressing and purifying 2CxxC in E. coli with enough yield for a 13C, 15N uniformly labeled NMR sample. The chemical shift assignment was completed and the NMR structure was calculated in reducing, slightly acidic conditions (1mM DTT, pH 5.5). The determined HTH domain shows good similarity with structures predicted by a homology search, while the N-terminal domain has no other homologous structure in the Protein Data Bank (PDB).The structure of the paddle region (27 residues) of the HsapBK(233-260) voltage and Ca+2 activated potassium channel, in DPC micelles, was determined by NMR. It shows a helix-turn-helix loop, which agrees well with the expected structure and could help to verify the proposed models of the voltage gating mechanism.The C-repressor (dimer of 99 residues) of bacteriophage P2 was analyzed by NMR. We assigned the chemical shifts and NMR structure determination is under way.
  •  
10.
  • Popović-Bijelić, Ana, 1976- (författare)
  • Activation and inhibition of diiron and iron-manganese ribonucleotide reductases
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ribonucleotide reductase (RNR) catalyses the reduction of ribonucleotides to deoxyribonucleotides. In conventional class I RNRs the active site is located in the R1 subunit, and the R2 subunit contains a diiron cofactor and a stable tyrosyl radical essential for activity. Class Ic Chlamydia trachomatis RNR lacks the tyrosyl radical and uses a Mn(IV)Fe(III) cofactor for catalysis. The requirement for metals for RNR activation was studied in C. trachomatis F127Y and Y129F R2, and in mouse wild type and Y177F R2 proteins. The results indicate that R2 affinity for metals is determined by the amino acid located next to the metal site, at the position of the radical carrying tyrosyl. Specifically, R2 proteins that contain phenylalanine in this place bind Mn and Fe, and the tyrosyl containing R2s bind only Fe. Further results show that C. trachomatis RNR can be inhibited by R2 C-terminal oligopeptides. The highest inhibition was observed for a 20-mer peptide indicating that the oligopeptide inhibition mechanism of class Ic is similar to that of the class Ia and b. The second part of the thesis deals with class Ia RNR inhibition. The results show that a lanthanum complex containing three 1,10-phenantroline molecules (KP772) which has showed promising cytotoxic activity in cancer cell lines inhibits mouse R2 protein in the presence of external reductants by iron-chelation. It is suggested that KP772 has several synergistic inhibition mechanisms that contribute to its overall anticancer activity. Moreover, other results show that Triapine, a promising chemotherapeutic compound, and its Fe, Ga, Zn, and Cu complexes, inhibit mouse R2 in both reducing and non-reducing conditions. Inhibition by Triapine involves the binding of the drug to the surface of the R2 protein leading to labilization of the Fe-center and subsequent Fe-chelation by Triapine. Formation of the Fe(II)-Triapine complex which reacts with O2 to produce reactive oxygen species results in complete RNR inactivation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy