SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Booleska operatorer måste skrivas med VERSALER

Träfflista för sökning "AMNE:(NATURAL SCIENCES Earth and Related Environmental Sciences) ;pers:(Lindroth Anders)"

Sökning: AMNE:(NATURAL SCIENCES Earth and Related Environmental Sciences) > Lindroth Anders

  • Resultat 1-10 av 148
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vestin, Patrik, et al. (författare)
  • Impacts of stump harvesting on carbon dioxide, methane and nitrous oxide fluxes
  • 2022
  • Ingår i: Iforest-Biogeosciences and Forestry. - : Italian Society of Sivilculture and Forest Ecology (SISEF). - 1971-7458. ; 15, s. 148-162
  • Tidskriftsartikel (refereegranskat)abstract
    • During 2010-2013, we investigated the effects of stump harvesting on greenide (N2O) with the flux-gradient technique at four experimental plots in a hemiboreal forest in Sweden. All plots were clear-cut and soil scarified and two of the plots were additionally stump harvested. The two clear-cut plots served as control plots. Due to differences in topography, we had one wetter and one drier plot of each treatment. All plots exhibited substantial emissions of GHGs and we noted significant effects of wetness on CO2, CH4 and N2O fluxes within treatments and significant effects of stump harvesting on CO2 and N2O fluxes at the dry plots. The CO2 emissions were lower at the dry stump harvested plot than at the dry control, but when estimated emissions from the removed stumps were added, total CO2 emissions were higher at the stump harvested plot, indicating a small enhancement of soil respiration. In addition, we noted significant emissions of N2O at this plot. At the wet plots, CO2 emissions were higher at the stump harvested plot, also suggesting a treatment effect but differences in wetness and vegetation cover at these plots make this effect more uncertain. At the wet plots, we noted sustained periods (weeks to months) of net N2O uptake. During the year with simultaneous measurements of the abovementioned GHGs, GHG budgets were 1.224??103 and 1.442??103 gm-2 of CO2-equivalents at the wet and dry stump harvested plots, respectively, and 1.070??103 and 1.696??103 gm-2 of CO2-equivalents at the wet and dry control plots, respectively. CO2 fluxes dominated GHG budgets at all plots but N2O contributed with 17% at the dry stump harvested plot. For the full period 2010-2013, total carbon (CO2+CH4) budgets were 4.301??103 and 4.114??103 g m-2 of CO2-eqvivalents at the wet and dry stump harvest plots, respectively and 4.107??103 and 5.274??103 gm-2 of CO2-equivalents at the wet and dry control plots, respectively. Our results support recent studies suggesting that stump harvesting does not result in substantial increase in CO2 emissions but uncertainties regarding GHG fluxes (especially N2O) remain and more long-term measurements are needed before robust conclusions can be drawn.
  •  
2.
  • Poyatos, R., et al. (författare)
  • Global transpiration data from sap flow measurements: the SAPFLUXNET database
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 13:6, s. 2607-2649
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.
  •  
3.
  • Podgrajsek, Eva, et al. (författare)
  • Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 11, s. 4225-4233
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluxes of carbon dioxide (CO2) and methane (CH4) from lakes may have a large impact on the magnitude of the terrestrial carbon sink. Traditionally lake fluxes have been measured using the floating chamber (FC) technique; however, several recent studies use the eddy covariance (EC) method. We present simultaneous flux measurements using both methods at lake Tämnaren in Sweden during field campaigns in 2011 and 2012. Only very few similar studies exist. For CO2 flux, the two methods agree relatively well during some periods, but deviate substantially at other times. The large discrepancies might be caused by heterogeneity of partial pressure of CO2 (pCO2w) in the EC flux footprint. The methods agree better for CH4 fluxes. It is, however, clear that short-term discontinuous FC measurements are likely to miss important high flux events.
  •  
4.
  • Pavelka, M., et al. (författare)
  • Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32:4, s. 569-587
  • Tidskriftsartikel (refereegranskat)abstract
    • Chamber measurements of trace gas fluxes between the land surface and the atmosphere have been conducted for almost a century. Different chamber techniques, including static and dynamic, have been used with varying degrees of success in estimating greenhouse gases (CO2, CH4, N2O) fluxes. However, all of these have certain disadvantages which have either prevented them from providing an adequate estimate of greenhouse gas exchange or restricted them to be used under limited conditions. Generally, chamber methods are relatively low in cost and simple to operate. In combination with the appropriate sample allocations, chamber methods are adaptable for a wide variety of studies from local to global spatial scales, and they are particularly well suited for in situ and laboratory-based studies. Consequently, chamber measurements will play an important role in the portfolio of the Pan-European long-term research infrastructure Integrated Carbon Observation System. The respective working group of the Integrated Carbon Observation System Ecosystem Monitoring Station Assembly has decided to ascertain standards and quality checks for automated and manual chamber systems instead of defining one or several standard systems provided by commercial manufacturers in order to define minimum requirements for chamber measurements. The defined requirements and recommendations related to chamber measurements are described here.
  •  
5.
  • Franz, D, et al. (författare)
  • Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe´s terrestrial ecosystems: a review
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32, s. 439-455
  • Tidskriftsartikel (refereegranskat)abstract
    • Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
  •  
6.
  • Lindroth, Anders, et al. (författare)
  • Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018
  • 2020
  • Ingår i: Philosophical Transactions of the Royal Society B-Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m(-2)yr(-1)during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m(-2)yr(-1)with a median value of -59 g C m(-2)yr(-1). This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
7.
  • Öquist, Mats, et al. (författare)
  • The full annual carbon balance of boreal forestsis highly sensitive to precipitation
  • 2014
  • Ingår i: Environmental Science and Technology Letters. - : American Chemical Society (ACS). - 2328-8930. ; 1:7, s. 315-319
  • Tidskriftsartikel (refereegranskat)abstract
    • The boreal forest carbon balance is predicted to be particularly sensitive to climate change. Carbon balance estimates of these biomes stem mainly from eddy-covariance measurements of net ecosystem exchange (NEE). However, a full net ecosystem carbon balance (NECB) must include the lateral carbon export (LCE) through discharge. We show that annual LCE at a boreal forest site ranged from 4 to 28%, averaging 11% (standard deviation of 8%), of annual NEE over 13 years. Annual LCE and NEE are strongly anticorrelated; years with weak NEE coincide with high LCE. The decreased NEE in response to increased precipitation is caused by a reduction in the amount of incoming radiation caused by clouds. If our finding is also valid for other sites, it implies that increased precipitation at high latitudes may shift forest NECB in large areas of the boreal biome. Our results call for future analysis of this dual effect of precipitation on NEE and LCE.
  •  
8.
  • Hyvonen, R., et al. (författare)
  • The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review
  • 2007
  • Ingår i: New Phytologist. - Cambridge : Wiley. - 0028-646X .- 1469-8137. ; 173:3, s. 463-480
  • Forskningsöversikt (refereegranskat)abstract
    • Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store.
  •  
9.
  • Kasurinen, Ville, et al. (författare)
  • Latent heat exchange in the boreal and arctic biomes
  • 2014
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 20:11, s. 3439-3456
  • Forskningsöversikt (refereegranskat)abstract
    • In this study latent heat flux (E) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control E in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated E of different ecosystem types under meteorological conditions at one site. Values of E varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that E is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of E as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling.
  •  
10.
  • Lindroth, Anders, et al. (författare)
  • Storms can cause Europe-wide reduction in forest carbon sink
  • 2009
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 15:2, s. 346-355
  • Tidskriftsartikel (refereegranskat)abstract
    • Disturbance of ecosystems is a major factor in regional carbon budgets, and it is believed to be partly responsible for the large inter-annual variability of the terrestrial part of the carbon balance. Forest fires have so far been considered as the most important disturbance but also other forms of disturbance such as insect outbreaks or wind-throw might contribute significantly to the largely unexplained inter-annual variability, at least in specific regions. The effect of wind-throw has not yet been estimated because of lack of data on how carbon fluxes are affected. The Gudrun storm, which hit Sweden in January 2005, resulted in ca. 66 million m(3) of wind-thrown stem wood on an area of ca. 272 000 ha. Using a model (BIOME-BGC) calibrated to CO2 flux measurements at two sites, the annual net ecosystem productivity during the first year after the storm was estimated to be in the range -897 to -1259 g C m(-2) yr(-1). This is a much higher loss compared with harvested (clear-cut) forests in Europe, which ranged between ca. -420 and -100 g m(-2) yr(-1). The reduction in the carbon sink scaled to the whole wind-thrown area was estimated at ca. 3 million tons C during the first year. By historical data on wind-throw in Europe combined with modelling, we estimated that the large Lothar storm in 1999 reduced the European carbon balance by ca. 16 million tons C, this is ca. 30% of the net biome production in Europe. We conclude that the impact of increased forest damage by more frequent storms in future climate change scenarios must be considered and that intermittent large wind-throw events may explain a part of the large inter-annual variability in the terrestrial carbon sink.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 148
Typ av publikation
tidskriftsartikel (135)
konferensbidrag (6)
forskningsöversikt (4)
bokkapitel (2)
rapport (1)
Typ av innehåll
refereegranskat (128)
populärvet., debatt m.m. (13)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Mölder, Meelis (33)
Lagergren, Fredrik (23)
Klemedtsson, Leif, 1 ... (20)
Vestin, Patrik (20)
Nilsson, Mats (14)
visa fler...
Vesala, T. (14)
Weslien, Per, 1963 (12)
Christensen, Torben (12)
Vesala, Timo (11)
Peichl, Matthias (10)
Lund, Magnus (10)
Laurila, T. (10)
Montagnani, Leonardo (10)
Eklundh, Lars (9)
Kljun, Natascha (9)
Aurela, M. (8)
Ottosson Löfvenius, ... (7)
Kutsch, W. (7)
Crill, Patrick (7)
Montagnani, L. (7)
Klemedtsson, Leif (7)
Aurela, Mika (7)
Chen, Jiquan (7)
Varlagin, Andrej (7)
Hellström, Margareta (6)
Arneth, Almut (6)
Reichstein, Markus (6)
Mammarella, I. (6)
Mastepanov, Mikhail (6)
Laurila, Tuomas (6)
Langvall, O (6)
Laudon, Hjalmar (5)
Lohila, A. (5)
Tagesson, Torbern (5)
Hari, P (5)
Papale, Dario (5)
Holst, Jutta (5)
Ström, Lena (5)
Aubinet, M. (5)
Heinesch, B. (5)
Rebmann, C. (5)
Wohlfahrt, Georg (5)
Desai, Ankur R. (5)
Cescatti, Alessandro (5)
Heliasz, Michal (5)
Mammarella, Ivan (5)
Law, Beverly E. (5)
Kolari, Pasi (5)
Feigenwinter, Christ ... (5)
visa färre...
Lärosäte
Lunds universitet (145)
Sveriges Lantbruksuniversitet (25)
Göteborgs universitet (24)
Stockholms universitet (7)
Kungliga Tekniska Högskolan (5)
Uppsala universitet (4)
visa fler...
Umeå universitet (2)
Linköpings universitet (2)
Luleå tekniska universitet (1)
Högskolan i Gävle (1)
Örebro universitet (1)
Malmö universitet (1)
visa färre...
Språk
Engelska (135)
Svenska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (148)
Lantbruksvetenskap (18)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy