SwePub
Sök i SwePub databas

  Utökad sökning

Booleska operatorer måste skrivas med VERSALER

Träfflista för sökning "AMNE:(NATURAL SCIENCES Earth and Related Environmental Sciences Climate Research) ;pers:(Zorita Eduardo)"

Sökning: AMNE:(NATURAL SCIENCES Earth and Related Environmental Sciences Climate Research) > Zorita Eduardo

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jungclaus, Johann H., et al. (författare)
  • The PMIP4 contribution to CMIP6 - Part 3 : The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:11, s. 4005-4033
  • Tidskriftsartikel (refereegranskat)abstract
    • The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
  •  
2.
  • Borzenkova, Irena, et al. (författare)
  • Climate Change During the Holocene (Past 12,000 Years)
  • 2015
  • Ingår i: Second Assessment of Climate Change for the Baltic Sea Basin. - Cham : Springer. - 9783319160054 - 9783319160061 ; , s. 25-49
  • Bokkapitel (refereegranskat)abstract
    • This chapter summarises the climatic and environmental information that can be inferred from proxy archives over the past 12,000 years. The proxy archives from continental and lake sediments include pollen, insect remnants and isotopic data. Over the Holocene, the Baltic Sea area underwent major changes due to two interrelated factors—melting of the Fennoscandian ice sheet (causing interplay between global sea-level rise due to the meltwater and regional isostatic rebound of the earth’s crust causing a drop in relative sea level ) and changes in the orbital configuration of the Earth (triggering the glacial to interglacial transition and affecting incoming solar radiation and so controlling the regional energy balance). The Holocene climate history showed three stages of natural climate oscillations in the Baltic Sea region: short-term cold episodes related to deglaciation during a stable positive temperature trend (11,000–8000 cal year BP); a warm and stable climate with air temperature 1.0–3.5 °C above modern levels (8000–4500 cal year BP), a decreasing temperature trend; and increased climatic instability (last 5000–4500 years). The climatic variation during the Lateglacial and Holocene is reflected in the changing lake levels and vegetation , and in the formation of a complex hydrographical network that set the stage for the Medieval Warm Period and the Little Ice Age of the past millennium.
  •  
3.
  • Ahmed, Moinuddin, et al. (författare)
  • Continental-scale temperature variability during the past two millennia
  • 2013
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 6:5, s. 339-346
  • Tidskriftsartikel (refereegranskat)abstract
    • Past global climate changes had strong regional expression. To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia. The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century. At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them. There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century. The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions. Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years.
  •  
4.
  • Anchukaitis, Kevin, et al. (författare)
  • Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions
  • 2017
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 163, s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regionalscale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (MayeAugust) mean temperatures across the extratropical Northern Hemisphere (40-90N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750e1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.
  •  
5.
  • Büntgen, Ulf, et al. (författare)
  • Tree-Ring Amplification of the Early Nineteenth-Century Summer Cooling in Central Europe
  • 2015
  • Ingår i: Journal of Climate. - 0894-8755 .- 1520-0442. ; 28:13, s. 5272-5288
  • Forskningsöversikt (refereegranskat)abstract
    • Annually resolved and absolutely dated tree-ring chronologies are the most important proxy archives to reconstruct climate variability over centuries to millennia. However, the suitability of tree-ring chronologies to reflect the “true” spectral properties of past changes in temperature and hydroclimate has recently been debated. At issue is the accurate quantification of temperature differences between early nineteenth-century cooling and recent warming. In this regard, central Europe (CEU) offers the unique opportunity to compare evidence from instrumental measurements, paleomodel simulations, and proxy reconstructions covering both the exceptionally hot summer of 2003 and the year without summer in 1816. This study uses 565 Swiss stone pine (Pinus cembra) ring width samples from high-elevation sites in the Slovakian Tatra Mountains and Austrian Alps to reconstruct CEU summer temperatures over the past three centuries. This new temperature history is compared to different sets of instrumental measurements and state-of-the-art climate model simulations. All records independently reveal the coolest conditions in the 1810s and warmest after 1996, but the ring width–based reconstruction overestimates the intensity and duration of the early nineteenth-century summer cooling by approximately 1.5°C at decadal scales. This proxy-specific deviation is most likely triggered by inflated biological memory in response to reduced warm season temperature, together with changes in radiation and precipitation following the Tambora eruption in April 1815. While suggesting there exists a specific limitation in ring width chronologies to capture abrupt climate perturbations with increased climate system inertia, the results underline the importance of alternative dendrochronological and wood anatomical parameters, including stable isotopes and maximum density, to assess the frequency and severity of climatic extremes.
  •  
6.
  • Brázdil, Rudolf, et al. (författare)
  • European climate of the past 500 years: new challenges for historical climatology
  • 2010
  • Ingår i: Climatic Change. - Netherlands : Springer. - 0165-0009 .- 1573-1480. ; 101:1-2, s. 7-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature reconstructions from Europe for the past 500 years basedon documentary and instrumental data are analysed. First, the basic documentarydata sources, including information about climate and weather-related extremes, aredescribed. Then, the standard palaeoclimatological reconstruction method adoptedhere is discussed with a particular application to temperature reconstructions fromdocumentary-based proxy data. The focus is on two new reconstructions; January–April mean temperatures for Stockholm (1502–2008), based on a combination ofdata for the sailing season in the Stockholm harbour and instrumental temperaturemeasurements, and monthly Central European temperature (CEuT) series (1500–2007) based on documentary-derived temperature indices of the Czech Republic,Germany and Switzerland combined with instrumental records from the samecountries. The two series, both of which are individually discussed in greater detail in subsequent papers in this special edition, are here compared and analysed usingrunning correlations and wavelet analysis. While the Stockholm series shows apronounced low-frequency component, the CEuT series indicates much weaker lowfrequencyvariations. Both series are analysed with respect to three different longperiodreconstructions of the North Atlantic Oscillation (NAO) and are comparedwith other European temperature reconstructions based on tree-rings, wine-harvestdata and various climate multiproxies. Correlation coefficients between individualproxy-based series show weaker correlations compared to the instrumental data.There are also indications of temporally varying temperature cross-correlationsbetween different areas of Europe. The two temperature reconstructions have alsobeen compared to geographically corresponding temperature output from simulationswith global and regional climate models for the past few centuries. The findingsare twofold: on the one hand, the analysis reinforces the hypothesis that the indexdatabased CEuT reconstruction may not appropriately reflect the centennial scalevariations. On the other hand, it is possible that climate models may underestimateregional decadal variability. By way of a conclusion, the results are discussed froma broader point of view and attention is drawn to some new challenges for futureinvestigations in the historical climatology in Europe.
  •  
7.
  •  
8.
  • Charpentier Ljungqvist, Fredrik, 1982-, et al. (författare)
  • Northern Hemisphere hydroclimate variability over the past twelve centuries
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 532:7597, s. 94-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate modelling and prediction of the local to continental-scale hydroclimate response to global warming is essential given the strong impact of hydroclimate on ecosystem functioning, crop yields, water resources, and economic security. However, uncertainty in hydroclimate projections remains large, in part due to the short length of instrumental measurements available with which to assess climate models. Here we present a spatial reconstruction of hydroclimate variability over the past twelve centuries across the Northern Hemisphere derived from a network of 196 at least millennium-long proxy records. We use this reconstruction to place recent hydrological changes and future precipitation scenarios in a long-term context of spatially resolved and temporally persistent hydroclimate patterns. We find a larger percentage of land area with relatively wetter conditions in the ninth to eleventh and the twentieth centuries, whereas drier conditions are more widespread between the twelfth and nineteenth centuries. Our reconstruction reveals that prominent seesaw patterns of alternating moisture regimes observed in instrumental data across the Mediterranean, western USA, and China have operated consistently over the past twelve centuries. Using an updated compilation of 128 temperature proxy records, we assess the relationship between the reconstructed centennial-scale Northern Hemisphere hydroclimate and temperature variability. Even though dry and wet conditions occurred over extensive areas under both warm and cold climate regimes, a statistically significant co-variability of hydroclimate and temperature is evident for particular regions. We compare the reconstructed hydroclimate anomalies with coupled atmosphere-ocean general circulation model simulations and find reasonable agreement during pre-industrial times. However, the intensification of the twentieth-century-mean hydroclimate anomalies in the simulations, as compared to previous centuries, is not supported by our new multi-proxy reconstruction. This finding suggests that much work remains before we can model hydroclimate variability accurately, and highlights the importance of using palaeoclimate data to place recent and predicted hydroclimate changes in a millennium-long context.
  •  
9.
  • Luterbacher, Jürg, et al. (författare)
  • Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium : results and insights from instrumental data,documentary evidence and coupled climate models
  • 2010
  • Ingår i: Climatic Change. - Netherlands : Springer. - 0165-0009 .- 1573-1480. ; 101:1-2, s. 201-234
  • Tidskriftsartikel (refereegranskat)abstract
    • We use long instrumental temperature series together with available field reconstructions of sea-level pressure (SLP) and three-dimensional climate modelsimulations to analyze relations between temperature anomalies and atmospheric circulation patterns over much of Europe and the Mediterranean for the late winter/early spring (January–April, JFMA) season. A Canonical Correlation Analysis(CCA) investigates interannual to interdecadal covariability between a new gridded SLP field reconstruction and seven long instrumental temperature series covering the past 250 years. We then present and discuss prominent atmospheric circulation patterns related to anomalous warm and cold JFMA conditions within different European areas spanning the period 1760–2007. Next, using a data assimilation technique, we link gridded SLP data with a climate model (EC-Bilt-Clio) for a better dynamical understanding of the relationship between large scale circulationand European climate. We thus present an alternative approach to reconstruct climate for the pre-instrumental period based on the assimilated model simulations.Furthermore, we present an independent method to extend the dynamic circulation analysis for anomalously cold European JFMA conditions back to the sixteenth century. To this end, we use documentary records that are spatially representative for the long instrumental records and derive, through modern analogs, large-scale SLP, surface temperature and precipitation fields. The skill of the analog method is tested in the virtual world of two three-dimensional climate simulations (ECHOGand HadCM3). This endeavor offers new possibilities to both constrain climate model into a reconstruction mode (through the assimilation approach) and to better assess documentary data in a quantitative way.
  •  
10.
  • Wilson, Rob, et al. (författare)
  • Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 134, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale millennial length Northern Hemisphere (NH) temperature reconstructions have been progressively improved over the last 20 years as new datasets have been developed. This paper, and its companion (Part II, Anchukaitis et al. in prep), details the latest tree-ring (TR) based NH land air temperature reconstruction from a temporal and spatial perspective. This work is the first product of a consortium called N-TREND (Northern Hemisphere Tree-Ring Network Development) which brings together dendroclimatologists to identify a collective strategy for improving large-scale summer temperature reconstructions. The new reconstruction, N-TREND2015, utilises 54 records, a significant expansion compared with previous TR studies, and yields an improved reconstruction with stronger statistical calibration metrics. N-TREND2015 is relatively insensitive to the compositing method and spatial weighting used and validation metrics indicate that the new record portrays reasonable coherence with large scale summer temperatures and is robust at all time-scales from 918 to 2004 where at least 3 TR records exist from each major continental mass. N-TREND2015 indicates a longer and warmer medieval period (~900-1170) than portrayed by previous TR NH reconstructions and by the CMIP5 model ensemble, but with better overall agreement between records for the last 600 years. Future dendroclimatic projects should focus on developing new long records from data-sparse regions such as North America and eastern Eurasia as well as ensuring the measurement of parameters related to latewood density to complement ring-width records which can improve local based calibration substantially.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy