SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURAL SCIENCES Mathematics Computational Mathematics) ;pers:(Hellander Andreas)"

Sökning: AMNE:(NATURAL SCIENCES Mathematics Computational Mathematics) > Hellander Andreas

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engblom, Stefan, et al. (författare)
  • Simulation of stochastic reaction-diffusion processes on unstructured meshes
  • 2008
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Stochastic chemical systems with diffusion are modeled with a reaction-diffusion master equation. On a macroscopic level, the governing equation is a reaction-diffusion equation for the averages of the chemical species. On a mesoscopic level, the master equation for a well stirred chemical system is combined with Brownian motion in space to obtain the reaction-diffusion master equation. The space is covered by an unstructured mesh and the diffusion coefficients on the mesoscale are obtained from a finite element discretization of the Laplace operator on the macroscale. The resulting method is a flexible hybrid algorithm in that the diffusion can be handled either on the meso- or on the macroscale level. The accuracy and the efficiency of the method are illustrated in three numerical examples inspired by molecular biology.
  •  
2.
  •  
3.
  • Ferm, Lars, et al. (författare)
  • A hierarchy of approximations of the master equation scaled by a size parameter
  • 2007
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Solutions of the master equation are approximated using a hierarchy of models based on the solution of ordinary differential equations: the macroscopic equations, the linear noise approximation and the moment equations. The advantage with the approximations is that the computational work with deterministic algorithms grows as a polynomial in the number of species instead of an exponential growth with conventional methods for the master equation. The relation between the approximations is investigated theoretically and in numerical examples. The solutions converge to the macroscopic equations when a parameter measuring the size of the system grows. A computational criterion is suggested for estimating the accuracy of the approximations. The numerical examples are models for the migration of people, in population dynamics and in molecular biology.
  •  
4.
  •  
5.
  • Ferm, Lars, et al. (författare)
  • An adaptive algorithm for simulation of stochastic reaction-diffusion processes
  • 2009
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the time steps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.
  •  
6.
  •  
7.
  •  
8.
  • Zhang, Tianru, et al. (författare)
  • Data management of scientific applications in a reinforcement learning-based hierarchical storage system
  • 2024
  • Ingår i: Expert systems with applications. - : Elsevier. - 0957-4174 .- 1873-6793. ; 237
  • Tidskriftsartikel (refereegranskat)abstract
    • In many areas of data-driven science, large datasets are generated where the individual data objects are images, matrices, or otherwise have a clear structure. However, these objects can be information-sparse, and a challenge is to efficiently find and work with the most interesting data as early as possible in an analysis pipeline. We have recently proposed a new model for big data management where the internal structure and information of the data are associated with each data object (as opposed to simple metadata). There is then an opportunity for comprehensive data management solutions to account for data-specific internal structure as well as access patterns. In this article, we explore this idea together with our recently proposed hierarchical storage management framework that uses reinforcement learning (RL) for autonomous and dynamic data placement in different tiers in a storage hierarchy. Our case-study is based on four scientific datasets: Protein translocation microscopy images, Airfoil angle of attack meshes, 1000 Genomes sequences, and Phenotypic screening images. The presented results highlight that our framework is optimal and can quickly adapt to new data access requirements. It overall reduces the data processing time, and the proposed autonomous data placement is superior compared to any static or semi-static data placement policies.
  •  
9.
  • Coulier, Adrien, 1992- (författare)
  • Multiscale Modeling in Systems Biology : Methods and Perspectives
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the last decades, mathematical and computational models have become ubiquitous to the field of systems biology. Specifically, the multiscale nature of biological processes makes the design and simulation of such models challenging. In this thesis we offer a perspective on available methods to study and simulate such models and how they can be combined to handle biological processes evolving at different scales.The contribution of this thesis is threefold. First, we introduce Orchestral, a multiscale modular framework to simulate multicellular models. By decoupling intracellular chemical kinetics, cell-cell signaling, and cellular mechanics by means of operator-splitting, it is able to combine existing software into one massively parallel simulation.  Its modular structure makes it easy to replace its components, e.g. to adjust the level of modeling details. We demonstrate the scalability of our framework on both high performance clusters and in a cloud environment.We then explore how center-based models can be used to study cellular mechanics in biological tissues. We show how modeling and numerical choices can affect the results of the simulation and mislead modelers into incorrect biological conclusions if these errors are not monitored properly. We then propose CBMOS, a Python framework specifically designed for the numerical study of such models.Finally, we study how spatial details in intracellular chemical kinetics can be efficiently approximated in a multiscale compartment-based model. We evaluate how this model compares to two other alternatives in terms of accuracy and computational cost. We then propose a computational pipeline to study and compare such models in the context of Bayesian parameter inference and illustrate its usage in three case studies.
  •  
10.
  • Coulier, Adrien, et al. (författare)
  • Systematic comparison of modeling fidelity levels and parameter inference settings applied to negative feedback gene regulation
  • 2022
  • Ingår i: PloS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 18:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative stochastic models of gene regulatory networks are important tools for studying cellular regulation. Such models can be formulated at many different levels of fidelity. A practical challenge is to determine what model fidelity to use in order to get accurate and representative results. The choice is important, because models of successively higher fidelity come at a rapidly increasing computational cost. In some situations, the level of detail is clearly motivated by the question under study. In many situations however, many model options could qualitatively agree with available data, depending on the amount of data and the nature of the observations. Here, an important distinction is whether we are interested in inferring the true (but unknown) physical parameters of the model or if it is sufficient to be able to capture and explain available data. The situation becomes complicated from a computational perspective because inference needs to be approximate. Most often it is based on likelihood-free Approximate Bayesian Computation (ABC) and here determining which summary statistics to use, as well as how much data is needed to reach the desired level of accuracy, are difficult tasks. Ultimately, all of these aspects—the model fidelity, the available data, and the numerical choices for inference—interplay in a complex manner. In this paper we develop a computational pipeline designed to systematically evaluate inference accuracy for a wide range of true known parameters. We then use it to explore inference settings for negative feedback gene regulation. In particular, we compare a detailed spatial stochastic model, a coarse-grained compartment-based multiscale model, and the standard well-mixed model, across several data-scenarios and for multiple numerical options for parameter inference. Practically speaking, this pipeline can be used as a preliminary step to guide modelers prior to gathering experimental data. By training Gaussian processes to approximate the distance function values, we are able to substantially reduce the computational cost of running the pipeline.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy