SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "AMNE:(NATURAL SCIENCES Physical Sciences) ;lar1:(hkr);pers:(Linse Sara)"

Search: AMNE:(NATURAL SCIENCES Physical Sciences) > Kristianstad University College > Linse Sara

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Assarsson, Anna, et al. (author)
  • Effects of polyamino acids and polyelectrolytes on amyloid β fibril formation
  • 2014
  • In: Langmuir. - : The American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 30:29, s. 8812-8
  • Journal article (peer-reviewed)abstract
    • The fibril formation of the neurodegenerative peptide amyloid β (Aβ42) is sensitive to solution conditions, and several proteins and peptides have been found to retard the process. Aβ42 fibril formation was followed with ThT fluorescence in the presence of polyamino acids (poly-glutamic acid, poly-lysine, and poly-threonine) and other polymers (poly(acrylic acid), poly(ethylenimine), and poly(diallyldimethylammonium chloride). An accelerating effect on the Aβ42 aggregation process is observed from all positively charged polymers, while no effect is seen from the negative or neutral polymers. The accelerating effect is dependent on the concentration of positive polymer in a highly reproducible manner. Acceleration is observed from a 1:500 polymer to Aβ42 weight ratio and up. Polyamino acids and the other polymers exert quantitatively the same effect at the same concentrations based on weight. Fibrils are formed in all cases as verified by transmission electron microscopy. The concentrations of polymers required for acceleration are too low to affect the Aβ42 aggregation process through increased ionic strength or molecular crowding effects. Instead, the acceleration seems to arise from the locally increased Aβ42 concentration near the polymers, which favors association and affects the electrostatic environment of the peptide.
  •  
2.
  • Cabaleiro-Lago, Celia, et al. (author)
  • Inhibition of IAPP and IAPP(20-29) fibrillation by polymeric nanoparticles
  • 2010
  • In: Langmuir. - : The American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 26:5, s. 3453-3461
  • Journal article (peer-reviewed)abstract
    • The fibrillation process of the islet amyloid polypeptide (IAPP) and its fragment (IAPP(20-29)) was studied by means of Thioflavin T (ThT) fluorescence and transmission electron microscopy in the absence and presence of N-isopropylacrylamide:N-tert-butylacrylamide (NiPAM:BAM) copolymeric nanoparticles. The process was found to be strongly affected by the presence of the nanoparticles, which retard protein fibrillation as a function of the chemical surface properties of the nanoparticles. The NiPAM:BAM ratio was varied from 50:50 to 100:0. The nanoparticles with higher fraction of NiPAM imposed the strongest retardation of IAPP and IAPP(20-29) fibrillation. These particles have the strongest hydrogen bonding capacity due to the less bulky N-isopropyl group and thus less steric hindrance of the hydrogen-bonding groups of the nanoparticle polymer backbone. Kinetic fibrillation data, as monitored by ThT fluorescence and supported by surface plasmon resonance experiments, suggest that the peptide is strongly absorbed onto the surface of the nanoparticles. This interaction reduces the concentration of peptide free in solution available to proceed to fibrillation which results in an increased lag time of fibrillation, observed as a delayed onset of ThT fluorescence increase, plus a reduction of the amount of fibrils formed as indicated by the equilibrium values at the end of the fibrillation reaction. For the fragment (IAPP(20-29)), the presence of nanoparticles changes the mechanism of association from monomers to fibrils, by interfering with early oligomeric species along the fibrillation pathway.
  •  
3.
  • Cabaleiro-Lago, Celia, et al. (author)
  • The effect of nanoparticles on amyloid aggregation depends on the protein stability and intrinsic aggregation rate.
  • 2012
  • In: Langmuir. - : The American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 28:3, s. 1852-1857
  • Journal article (peer-reviewed)abstract
    • Nanoparticles interfere with protein amyloid formation. Catalysis of the process may occur due to increased local protein concentration and nucleation on the nanoparticle surface, whereas tight binding or a large particle/protein surface area may lead to inhibition of protein aggregation. Here we show a clear correlation between the intrinsic protein stability and the nanoparticle effect on the aggregation rate. The results were reached for a series of five mutants of single-chain monellin differing in intrinsic stability toward denaturation, for which a correlation between protein stability and aggregation propensity has been previously documented by Szczepankiewicz et al. [Mol. Biosyst.20107 (2), 521-532]. The aggregation process was monitored by thioflavin T fluorescence in the absence and presence of copolymeric nanoparticles with different hydrophobic characters. For mutants with a high intrinsic stability and low intrinsic aggregation rate, we find that amyloid fibril formation is accelerated by nanoparticles. For mutants with a low intrinsic stability and high intrinsic aggregation rate, we find the opposite--a retardation of amyloid fibril formation by nanoparticles. Moreover, both catalytic and inhibitory effects are most pronounced with the least hydrophobic nanoparticles, which have a larger surface accessibility of hydrogen-bonding groups in the polymer backbone.
  •  
4.
  • Assarsson, Anna, et al. (author)
  • Charge dependent retardation of amyloid β aggregation by hydrophilic proteins
  • 2014
  • In: ACS Chemical Neuroscience. - 1948-7193 .- 1948-7193. ; 5:4, s. 266-74
  • Journal article (peer-reviewed)abstract
    • The aggregation of amyloid β peptides (Aβ) into amyloid fibrils is implicated in the pathology of Alzheimer's disease. In light of the increasing number of proteins reported to retard Aβ fibril formation, we investigated the influence of small hydrophilic model proteins of different charge on Aβ aggregation kinetics and their interaction with Aβ. We followed the amyloid fibril formation of Aβ40 and Aβ42 using thioflavin T fluorescence in the presence of six charge variants of calbindin D9k and single-chain monellin. The formation of fibrils was verified with transmission electron microscopy. We observe retardation of the aggregation process from proteins with net charge +8, +2, -2, and -4, whereas no effect is observed for proteins with net charge of -6 and -8. The single-chain monellin mutant with the highest net charge, scMN+8, has the largest retarding effect on the amyloid fibril formation process, which is noticeably delayed at as low as a 0.01:1 scMN+8 to Aβ40 molar ratio. scMN+8 is also the mutant with the fastest association to Aβ40 as detected by surface plasmon resonance, although all retarding variants of calbindin D9k and single-chain monellin bind to Aβ40.
  •  
5.
  • Cabaleiro-Lago, Celia, et al. (author)
  • Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation
  • 2010
  • In: ACS Chemical Neuroscience. - 1948-7193 .- 1948-7193. ; 1:4, s. 279-87
  • Journal article (peer-reviewed)abstract
    • The fibrillation kinetics of the amyloid β peptide is analyzed in presence of cationic polystyrene nanoparticles of different size. The results highlight the importance of the ratio between the peptide and particle concentration. Depending on the specific ratio, the kinetic effects vary from acceleration of the fibrillation process by reducing the lag phase at low particle surface area in solution to inhibition of the fibrillation process at high particle surface area. The kinetic behavior can be explained if we assume a balance between two different pathways: first fibrillation of free monomer in solution and second nucleation and fibrillation promoted at the particle surface. The overall rate of fibrillation will depend on the interplay between these two pathways, and the predominance of one mechanism over the other will be determined by the relative equilibrium and rate constants.
  •  
6.
  • Lynch, Iseult, et al. (author)
  • The nanoparticle - protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century
  • 2007
  • In: Advances in Colloid and Interface Science. - Univ Coll Dublin, Sch Chem & Chem Biol, Dublin, Ireland. Conway Inst Biomed & Biomol Res, Dublin, Ireland. Lund Univ, SE-22100 Lund, Sweden. : ELSEVIER. - 0001-8686 .- 1873-3727. ; 134-35, s. 167-174
  • Journal article (peer-reviewed)abstract
    • The major aim of our current work is to develop a deep understanding of biological effects of nanoparticles and how these effects are mediated by proteins that are adsorbed on the nanoparticles under different biological circumstances. Due to their small size, nanoparticles have distinct properties compared to the bulk form of the same materials, and these properties are rapidly revolutionizing many areas of medicine and technology. However, relatively little is known about the interaction of nanoscale objects with biological systems, as this requires quite different concepts from more established nanoscience. Thus, we have argued that in a biological fluid, proteins associate with nanoparticles, and it is the amount and presentation of the proteins on the surface rather than the particles themselves that are the cause of numerous biological responses. It is this outer layer of proteins that is seen by the biological cells, and leads to their responses. We are developing novel techniques to identify and quantify the proteins that are consistently associated with nanoparticles, as a function of the nanoparticle size, shape, and surface properties, and to correlate the adsorbed protein identities with their association and dissociation rates to and from the nanoparticles. We also seek to understand the degree of conformational change that they undergo upon adsorption to the nanoparticles. In essence, we wish to create "epitope maps" of the protein corona that surrounds nanoparticles in biological solutions, as it is the particle-protein complex that is the biologically active entity. (c) 2007 Elsevier B.V. All rights reserved.
  •  
7.
  • Sanagavarapu, Kalyani, et al. (author)
  • A method of predicting the in vitro fibril formation propensity of Aβ40 mutants based on their inclusion body levels in E. coli
  • 2019
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Overexpression of recombinant proteins in bacteria may lead to their aggregation and deposition in inclusion bodies. Since the conformational properties of proteins in inclusion bodies exhibit many of the characteristics typical of amyloid fibrils. Based on these findings, we hypothesize that the rate at which proteins form amyloid fibrils may be predicted from their propensity to form inclusion bodies. To establish a method based on this concept, we first measured by SDS-PAGE and confocal microscopy the level of inclusion bodies in E. coli cells overexpressing the 40-residue amyloid-beta peptide, Aβ40, wild-type and 24 charge mutants. We then compared these results with a number of existing computational aggregation propensity predictors as well as the rates of aggregation measured in vitro for selected mutants. Our results show a strong correlation between the level of inclusion body formation and aggregation propensity, thus demonstrating the power of this approach and its value in identifying factors modulating aggregation kinetics.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view