SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURVETENSKAP Biologi Biokemi och molekylärbiologi) ;lar1:(gu)"

Sökning: AMNE:(NATURVETENSKAP Biologi Biokemi och molekylärbiologi) > Göteborgs universitet

  • Resultat 1-10 av 2043
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sanli, Kemal, et al. (författare)
  • Metagenomic Sequencing of Marine Periphyton: Taxonomic and Functional Insights into Biofilm Communities
  • 2015
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 6:1192
  • Tidskriftsartikel (refereegranskat)abstract
    • Periphyton communities are complex phototrophic, multispecies biofilms that develop on surfaces in aquatic environments. These communities harbor a large diversity of organisms comprising viruses, bacteria, algae, fungi, protozoans and metazoans. However, thus far the total biodiversity of periphyton has not been described. In this study, we use metagenomics to characterize periphyton communities from the marine environment of the Swedish west coast. Although we found approximately ten times more eukaryotic rRNA marker gene sequences compared to prokaryotic, the whole metagenome-based similarity searches showed that bacteria constitute the most abundant phyla in these biofilms. We show that marine periphyton encompass a range of heterotrophic and phototrophic organisms. Heterotrophic bacteria, including the majority of proteobacterial clades and Bacteroidetes, and eukaryotic macro-invertebrates were found to dominate periphyton. The phototrophic groups comprise Cyanobacteria and the alpha-proteobacterial genus Roseobacter, followed by different micro- and macro-algae. We also assess the metabolic pathways that predispose these communities to an attached lifestyle. Functional indicators of the biofilm form of life in periphyton involve genes coding for enzymes that catalyze the production and degradation of extracellular polymeric substances, mainly in the form of complex sugars such as starch and glycogen-like meshes together with chitin. Genes for 278 different transporter proteins were detected in the metagenome, constituting the most abundant protein complexes. Finally, genes encoding enzymes that participate in anaerobic pathways, such as denitrification and methanogenesis, were detected suggesting the presence of anaerobic or low-oxygen micro-zones within the biofilms.
  •  
2.
  •  
3.
  • Tedersoo, Leho, et al. (författare)
  • Novel soil-inhabiting clades fill gaps in the fungal tree of life
  • 2017
  • Ingår i: Microbiome. - : Springer Science and Business Media LLC. - 2049-2618. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background - Fungi are a diverse eukaryotic group of degraders, pathogens, and symbionts, with many lineages known only from DNA sequences in soil, sediments, air, and water. Results - We provide rough phylogenetic placement and principal niche analysis for >40 previously unrecognized fungal groups at the order and class level from global soil samples based on combined 18S (nSSU) and 28S (nLSU) rRNA gene sequences. Especially, Rozellomycota (Cryptomycota), Zygomycota s.lat, Ascomycota, and Basidiomycota are rich in novel fungal lineages, most of which exhibit distinct preferences for climate and soil pH. Conclusions - This study uncovers the great phylogenetic richness of previously unrecognized order- to phylum-level fungal lineages. Most of these rare groups are distributed in different ecosystems of the world but exhibit distinct ecological preferences for climate or soil pH. Across the fungal kingdom, tropical and non-tropical habitats are equally likely to harbor novel groups. We advocate that a combination of traditional and high-throughput sequencing methods enable efficient recovery and phylogenetic placement of such unknown taxonomic groups.
  •  
4.
  • Alm Rosenblad, Magnus, 1957, et al. (författare)
  • Detection of signal recognition particle (SRP) RNAs in the nuclear ribosomal internal transcribed spacer 1 (ITS1) of three lineages of ectomycorrhizal fungi (Agaricomycetes, Basidiomycota)
  • 2016
  • Ingår i: MycoKeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; 13, s. 21-33
  • Tidskriftsartikel (refereegranskat)abstract
    • During a routine scan for Signal Recognition Particle (SRP) RNAs in eukaryotic sequences, we surprisingly found in silico evidence in GenBank for a 265-base long SRP RNA sequence in the ITS1 region of a total of 11 fully identified species in three ectomycorrhizal genera of the Basidiomycota (Fungi): Astraeus, Russula, and Lactarius. To rule out sequence artifacts, one specimen from a species indicated to have the SRP RNA-containing ITS region in each of these genera was ordered and re-sequenced. Sequences identical to the corresponding GenBank entries were recovered, or in the case of a non-original but conspecific specimen differed by three bases, showing that these species indeed have an SRP RNA sequence incorporated into their ITS1 region. Other than the ribosomal genes, this is the first known case of non-coding RNAs in the eukaryotic ITS region, and it may assist in the examination of other types of insertions in fungal genomes.
  •  
5.
  • Cheung, Henry Lok Shan, et al. (författare)
  • Denitrification, anammox, and DNRA in oligotrophic continental shelf sediments
  • 2024
  • Ingår i: Limnology and Oceanography. - 1939-5590 .- 0024-3590.
  • Tidskriftsartikel (refereegranskat)abstract
    • Continental shelf sediments are considered hotspots for nitrogen (N) removal. While most investigations have quantified denitrification in shelves receiving large amounts of anthropogenic nutrient supply, we lack insight into the key drivers of N removal on oligotrophic shelves. Here, we measured rates of N removal through denitrification and anammox by the revised-isotope pairing technique (r-IPT) along the Northeastern New Zealand shelf. Denitrification dominated total N2 production at depths between 30 and 128 m with average rates (± SE) ranging from 65 ± 28 to 284 ± 72 μmol N m−2 d−1. N2 production by anammox ranged from 3 ± 1 to 28 ± 11 μmol N m−2 d−1 and accounted for 2–19% of total N2 production. DNRA was negligible in these oligotrophic settings. Parallel microbial community analysis showed that both Proteobacteria and Planctomycetota were key taxa driving denitrification. Denitrification displayed a negative correlation with oxygen penetration depth, and a positive correlation with macrofauna abundance. Our denitrification rates were comparable to oligotrophic shelves from the Arctic, but were lower than those from nutrient-rich Pacific and Atlantic shelves. Based on our results and existing IPT measurements, the global shelf denitrification rate was reassessed to be 53.5 ± 8.1 Tg N yr−1, equivalent to 20 ± 2% of marine N removal. We suggest that previous estimates of global shelf N loss might have been overestimated due to sampling bias toward areas with high N loads in the Northern Hemisphere.
  •  
6.
  • Janzon, Anders, 1978, et al. (författare)
  • Exploring the microbial resistome in river sediments exposed to extraordinary high levels of antibiotics
  • 2010
  • Ingår i: 35th FEBS Congress: Molecules of Life.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The rapid development and propagation of antibiotic resistance in pathogenic and opportunistic bacteria is a major threat to public health worldwide. The phenomenon has been widely studied in the clinical setting, but comparatively little is known about the prevalence and diversity of antibiotic resistance in communities of environmental bacteria, often referred to as the environmental resistome. As the external environment may function as a reservoir of resistance genes to human pathogens, we are interested in how environmental bacteria are affected by antibiotic pollution. We have previously isolated microbial DNA from river sediments taken up- and downstream from a water treatment plant that processes waste water from several pharmaceutical plants producing antibiotics. In a previous study, we used deep sequencing to identify unprecedented frequencies of known resistance genes to several classes of antibiotics in these samples. In this study, we aim to functionally characterize the resistome in a more open and exploratory way by screening genomic DNA libraries transformed into sensitive hosts. To generate the libraries, several experimental strategies were explored, including mechanical shearing and enzymatic digestion of the isolated DNA followed by blunt- or sticky end cloning into different plasmids, subsequently transformed into sensitive E. coli. Pros and cons of the different strategies will be discussed along with preliminary results of the screening against selected antibiotics.
  •  
7.
  •  
8.
  • Mamontov, Eugen, 1955 (författare)
  • Homeorhesis and evolutionary properties of living systems: From ordinary differential equations to the active-particle generalized kinetics theory
  • 2006
  • Ingår i: 10th Evolutionary Biology Meeting at Marseilles, 20-22 September 2006, Marseilles, France.
  • Konferensbidrag (refereegranskat)abstract
    • Advanced generalized-kinetic-theory (GKT) models for biological systems are developed for populations of active (or living) particles [1]-[5]. These particles are described with both the stochastic variables common in kinetic theory (such as time, the particle random location and velocity) and the stochastic variables related to the internal states of an active particle. Evolution of these states represents biological, ecological, or social properties of the particle behavior. Paper [6] analyzes a number of the well-known statistical-mechanics approaches and shows that the active-particle GKT (APGKT) is the only treatment capable of modelling living systems. Work [2] summarizes the significance of the notion of an active particle in kinetic models. This notion draws attention to the features distinguishing living matter from nonliving matter. They are discussed by many authors (e.g., [7]-[15], [1]-[3], [6], [16]-[18]). Work [11] considers a lot of differences between living and nonliving matters, and the limitations of the modelling approaches developed for nonliving matter. Work [6] mainly focuses on the comparison of a few theoretical mechanics treatments in terms of the key living-matter properties formulated in [15]. One of the necessary properties of the evolution of living systems is homeorhesis. It is, loosely speaking, a peculiar qualitative and quantitative insensitivity of a living system to the exogenous signals acting on it. The earlier notion, homeostasis, was introduced by W. B. Cannon in 1926 who discussed the phenomenon in detail later [7]. Homeorhesis introduced by C. H. Waddington [8, p. 32] generalizes homeostasis and is well known in biology [8], [9], [12]. It is an inherent part of mathematical models for oncogeny (e.g., [16]-[18], [6, Appendix]). Homeorhesis is also discussed in [3, Section 4] in connection with APGKT. Homeorhesis is documented in ecology (e.g., [11], [13, the left column on p. 675]) where it is one of the key notions of the strong Gaia theory, a version of the Gaia theory (e.g., [14, Chapter 8]). The strong Gaia theory “states that the planet with its life, a single living system, is regulated in certain aspects by that life” [14, p. 124]. The very origin of the name “Gaia” is related to homeorhesis or homeostasis [14, p. 118]. These notions are also used in psychology and sociology. If evolution of a system is not homeorhetic, the system can not be living. Work [6, Appendix] derives a preliminary mathematical formulation of homeorhesis in terms of the simplest dynamical systems, i.e. ordinary differential equations (ODEs). The present work complements, extended, and further specify the approach of [6, Appendix]. The work comprises the two main parts. The first part develops the sufficient conditions for ODE systems to describe homeorhesis, and suggests a fairly general structure of the ODE model. It regards homeorhesis as piecewise homeostasis. The model can be specified in different ways depending on specific systems and specific purposes of the analysis. An example of the specification is also noted (the PhasTraM nonlinear reaction-diffusion model for hyperplastic oncogeny [16]-[18]). The second part of the work discusses implementation of the above homeorhesis ODE model in terms of a special version [3] of APGKT (see above). The key feature of this version is that the components of a living population need not be discrete: the subdivision into the components is described with a general, continuous-discrete probability distribution (see also [6]). This enables certain properties of living matter noted in [15]. Moreover, the corresponding APGKT model presents a system of, firstly, a generalized kinetic equation for the conditional distribution function conditioned by the internal states of the population and, secondly, Ito's stochastic differential equations for these states. This treatement employs the results on nonstationary invariant diffusion stochastic processes [19]. The second part of the work also stresses that APGKT is substantially more important for the living-matter analysis than in the case of nonliving matter. One of the reasons is certain limitations in experimental sampling of the living-system modes presented with stochastic processes. A few directions for future research are suggested as well. REFERENCES: [1] Bellomo, N., Bellouquid, A. and Delitala, M., 2004, Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition, Math. Models Methods Appl. Sci., 14, 1683-1733. [2] Bellomo, N., 2006, New hot Paper Comments, Essential Science Indicators, http://www.esi-topics.com/nhp/2006 /may- 06-NicolaBellomo.html. [3] Willander, M., Mamontov, E. and Chiragwandi, Z., 2004, Modelling living fluids with the subdivision into the components in terms of probability distributions, Math. Models Methods Appl. Sci. 14, 1495-1520. [4] Bellomo, N. and Maini, P.K., 2005, Preface and the Special Issue “Multiscale Cancer Modelling-A New Frontier in Applied Mathematics”, Math. Models Methods Appl. Sci., 15, iii-viii. [5] De Angelis, E. and Delitala, M., 2006, Modelling complex systems in applied sciences: Methods and tools of the mathematical kinetic theory for active particles. Mathl Comput. Modelling, 43, 1310-1328. [6] Mamontov, E., Psiuk-Maksymowicz, K. and Koptioug, A., 2006, Stochastic mechanics in the context of the properties of living systems, Mathl Comput. Modelling, Article in Press, 13 pp. [7] Cannon, W.B., 1932, The Wisdom of the Body (New York: Norton). [8] Waddington, C.H., 1957, The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology (London, George Allen and Unwin). [9] Waddington, C.H., 1968, Towards a theoretical biology, Nature, 218, 525-527. [10] Cotnoir, P.-A., 1981, La compétence environnementale: Une affaire d’adaptation. Séminaire en écologie behaviorale, Univeristé du Québec, Montralé. Available online at: http://pac.cam.org/culture.doc . [11] O’Neill, R.V., DeAngelis, D.L., Waide, J.B. and Allen, T.F.H., 1986, A Hierarchical Concept of Ecosystems, Princeton: Princeton Univ. Press). [12] Sauvant, D., 1992, La modélisation systémique en nutrition, Reprod. Nutr. Dev., 32, 217-230. [13] Christensen, N.L., Bartuska, A.M., Brown, J.H., Carpenter, S., D'Antonio, C., Francis, R., Franklin, J.F., MacMahon, J.A., Noss, R.F., Parsons, D.J., Peterson, C.H., Turner, M.G. and Woodmansee, R.G., 1996, The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management, Ecological Applications, 6, 665-691. Available online at: http://www.esa.org/pao/esaPositions/Papers/ReportOfSBEM.php. [14] Margulis, L., 1998, Symbiotic Planet. A New Look at Evolution (Amherst: Sciencewriters). [15] Hartwell, L.H., Hopfield, J.J., Leibler, S. and Murray, A.W., 1999, From molecular to modular cell biology, Nature, 402, C47-C52. [16] Mamontov, E., Koptioug, A.V. and Psiuk-Maksymowicz, K., 2006, The minimal, phase-transition model for the cell- number maintenance by the hyperplasia-extended homeorhesis, Acta Biotheoretica, 54, 44 pp., (no. 2, May-June, accepted). [17] Psiuk-Maksymowicz, K. and Mamontov, E., 2005, The time-slices method for rapid solving the Cauchy problem for nonlinear reaction-diffusion equations in the competition of homeorhesis with genotoxically activated hyperplasia, In: European Conference on Mathematical and Theoretical Biology - ECMTB05 (July 18-22, 2005) Book of Abstracts, Vol.1 (Dresden: Center for Information Services and High Performance Computing, Dresden Univ. Technol.), p. 429 (http://www.ecmtb05.org/). [18] Psiuk-Maksymowicz, K. and Mamontov, E., 2006, The homeorhesis-based modelling and fast numerical analysis for oncogenic hyperplasia under radiation therapy, submitted. [19] Mamontov, E., 2005, Nonstationary invariant distributions and the hydrodynamic-style generalization of the Kolmogorov-forward/Fokker-Planck equation, Appl. Math. Lett. 18 (9) 976-982.
  •  
9.
  • Eriksson, Martin, 1970, et al. (författare)
  • Triclosan changes community composition and selects for specific bacterial taxa in marine periphyton biofilms in low nanomolar concentrations
  • 2020
  • Ingår i: Ecotoxicology. - : Springer Science and Business Media LLC. - 0963-9292 .- 1573-3017. ; 29:7, s. 1083-1094
  • Tidskriftsartikel (refereegranskat)abstract
    • The antibacterial agent Triclosan (TCS) is a ubiquitous environmental contaminant due to its widespread use. Sensitivity to TCS varies substantially among eu- and pro-karyotic species and its risk for the marine environment remains to be better elucidated. In particular, the effects that TCS causes on marine microbial communities are largely unknown. In this study we therefore used 16S amplicon rDNA sequencing to investigate TCS effects on the bacterial composition in marine periphyton communities that developed under long-term exposure to different TCS concentrations. Exposure to TCS resulted in clear changes in bacterial composition already at concentrations of 1 to 3.16 nM. We conclude that TCS affects the structure of the bacterial part of periphyton communities at concentrations that actually occur in the marine environment. Sensitive taxa, whose abundance decreased significantly with increasing TCS concentrations, include the Rhodobiaceae and Rhodobacteraceae families of Alphaproteobacteria, and unidentified members of the Candidate division Parcubacteria. Tolerant taxa, whose abundance increased significantly with higher TCS concentrations, include the families Erythrobacteraceae (Alphaproteobacteria), Flavobacteriaceae (Bacteroidetes), Bdellovibrionaceae (Deltaproteobacteria), several families of Gammaproteobacteria, and members of the Candidate phylum Gracilibacteria. Our results demonstrate the variability of TCS sensitivity among bacteria, and that TCS can change marine bacterial composition at concentrations that have been detected in the marine environment.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 2043
Typ av publikation
tidskriftsartikel (1634)
konferensbidrag (152)
doktorsavhandling (101)
forskningsöversikt (85)
bokkapitel (40)
annan publikation (13)
visa fler...
rapport (6)
recension (4)
samlingsverk (redaktörskap) (3)
bok (3)
licentiatavhandling (2)
visa färre...
Typ av innehåll
refereegranskat (1737)
övrigt vetenskapligt/konstnärligt (306)
Författare/redaktör
Hohmann, Stefan, 195 ... (74)
Tamás, Markus J., 19 ... (70)
Eriksson, Leif A, 19 ... (49)
Nyström, Thomas, 196 ... (47)
Blomberg, Anders, 19 ... (46)
Warringer, Jonas, 19 ... (43)
visa fler...
Sunnerhagen, Per, 19 ... (41)
Larsson, Åke, 1944 (41)
Backhaus, Thomas, 19 ... (40)
Förlin, Lars, 1950 (34)
Neutze, Richard, 196 ... (33)
Helou, Khalil, 1966 (32)
Katona, Gergely, 197 ... (32)
Forssell-Aronsson, E ... (32)
Wallin, Margareta, 1 ... (32)
Zetterberg, Henrik, ... (31)
Pilon, Marc, 1966 (31)
Moore, Edward R.B. 1 ... (30)
Karlsson, Niclas G., ... (30)
Borén, Jan, 1963 (30)
Kristiansson, Erik, ... (29)
Jin, Chunsheng (28)
Ewing, Andrew G, 195 ... (28)
Falkenberg, Maria, 1 ... (28)
Blennow, Kaj, 1958 (26)
Langen, Britta (25)
Spetz, Johan (25)
Liu, Beidong, 1972 (24)
Westenhoff, Sebastia ... (24)
Parris, Toshima Z, 1 ... (24)
Orekhov, Vladislav, ... (23)
Larson, Göran, 1953 (23)
Gustafsson, Claes M, ... (23)
Hanson, Niklas, 1976 (23)
Wahlgren, Weixiao Yu ... (23)
Grøtli, Morten, 1966 (20)
Parkkonen, Jari, 195 ... (20)
Sihlbom, Carina, 197 ... (19)
Thorsen, Michael, 19 ... (19)
Rudqvist, Nils (19)
Ståhlman, Marcus, 19 ... (18)
Nilsson, Jonas, 1970 (17)
Falsen, Enevold, 193 ... (17)
Goksör, Mattias, 197 ... (16)
Aronsson, Henrik, 19 ... (16)
Krantz, Marcus, 1975 (16)
Wysocki, Robert (16)
Karlsson, B Göran, 1 ... (16)
Brändén, Gisela, 197 ... (16)
Nordlander, Bodil, 1 ... (16)
visa färre...
Lärosäte
Chalmers tekniska högskola (395)
Uppsala universitet (121)
Lunds universitet (112)
Karolinska Institutet (108)
Umeå universitet (59)
visa fler...
Kungliga Tekniska Högskolan (45)
Stockholms universitet (43)
Linköpings universitet (42)
Sveriges Lantbruksuniversitet (35)
Örebro universitet (24)
Högskolan i Skövde (20)
RISE (14)
Linnéuniversitetet (11)
Mittuniversitetet (7)
Karlstads universitet (6)
Luleå tekniska universitet (3)
Högskolan i Borås (3)
Naturhistoriska riksmuseet (3)
Jönköping University (2)
Högskolan i Halmstad (1)
Högskolan Väst (1)
Malmö universitet (1)
Södertörns högskola (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (2012)
Svenska (27)
Tyska (3)
Japanska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2041)
Medicin och hälsovetenskap (616)
Teknik (90)
Lantbruksvetenskap (30)
Humaniora (7)
Samhällsvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy