SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURVETENSKAP Geovetenskap och miljövetenskap Geokemi) ;pers:(Aiglsperger Thomas)"

Sökning: AMNE:(NATURVETENSKAP Geovetenskap och miljövetenskap Geokemi) > Aiglsperger Thomas

  • Resultat 1-10 av 46
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rivera, Javier, et al. (författare)
  • Platinum-group element and gold enrichment in soils monitored by chromium stable isotopes during weathering of ultramafic rocks
  • 2018
  • Ingår i: Chemical Geology. - : Elsevier. - 0009-2541 .- 1872-6836. ; 499, s. 84-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Weathering of ultramafic rocks can lead to the formation of soil profiles with high contents of Fe, Ni, Co, platinum-group elements (PGE) and gold. Traditionally, these metal-rich soils are known as “laterites” and are formed under tropical climates and stable tectonic conditions. However, little is known about their possible development in cold/humid regions, and the factors governing PGE and gold mobility and enrichment under these weathering conditions are poorly constrained. In this study, five soil profiles developed on serpentinized, chromite-bearing ultramafic rocks at La Cabaña, located in the Coastal Range of south-central Chile (38° S) were studied by combining major and trace element geochemistry with chromium stable isotope data. The results show that the soils developed at La Cabaña have higher PGE and Au contents than the parent serpentinite rock, with ∑PGE and Au reaching up to 160 ppb and 29 ppb in a limonitic soil horizon and clay saprolite, respectively. Most soil samples have slightly negative δ53/52CrSRM979 values, within a range of −0.089 ± 0.012‰ to −0.320 ± 0.013‰ (average of −0.178‰), and are in agreement with previous data reported for modern soils. A noteworthy relation between δ53/52Cr data and PGE + Au contents is observed in the studied soil horizons, where isotopically lighter values of δ53/52Cr match the higher contents of PGE and gold. These results show that pedogenetic processes operating at the cold and humid La Cabaña area are capable of increasing the total PGE and Au contents of certain soil horizons. Such processes are complex and multivariate but are primarily modulated by chromite dissolution and the formation of secondary phases such as clay minerals and oxy-hydroxide phases in the soil. These findings provide evidence that important weathering and PGE + Au supergene accumulation are not only restricted to tropical latitudes, and that the chromium isotope system is a useful proxy to track surface redox process and noble metal enrichment during pedogenesis.
  •  
2.
  • Salifu, Musah, et al. (författare)
  • Stable sulphur and oxygen isotopes as indicators of sulphide oxidation reaction pathways and historical environmental conditions in a Cu–W–F skarn tailings piles, south-central Sweden
  • 2019
  • Ingår i: Applied Geochemistry. - : Elsevier. - 0883-2927 .- 1872-9134. ; 110
  • Tidskriftsartikel (refereegranskat)abstract
    • Improved remediation strategies or predictive modelling of acid mine drainage (AMD) sites, require detailed understanding of the sulphide oxidation reaction pathways, as well as pollutant-source characterisation. In this study, ore minerals, solids and water-soluble fractions of an oxidising Cu–W–F skarn tailings in Yxsjöberg, Sweden, were chemically and isotopically (δ34S and δ18O) characterised to reveal sulphate (SO42−) sources, sulphide oxidation reaction pathways and historical environmental conditions in the tailings. δ34S was additionally used to trace the weathering of danalite [(Fe,Mn,Zn)4Be3(SiO4)3S], a rare and unstable sulphur-bearing silicate mineral containing high concentrations of beryllium (Be) and zinc (Zn). Eighteen subsamples from a drill core of the tailings were subjected to batch leaching tests to obtain water-soluble fractions, which reflected both existing pore-waters and easily-soluble secondary minerals. The tailings were categorised into three geochemical zones: (i) oxidised zone (OZ), (ii) transition zone (TZ) and (iii) unoxidised zone (UZ), based on prevailing pH, elemental concentrations and colour. The upper OZ (UOZ) showed a sharp depletion of sulphur (S) and relatively higher δ18OSO4 values (−3.0 to +0.1‰) whereas the underlying lower OZ (LOZ) showed S accumulation and lower δ18OSO4 values (−4.6 to −4.2‰). The higher δ18OSO4 suggested the role of atmospheric oxygen, O2 (as oxidant), contribution of evaporated rainwaters and/or evaporation in the upper zones of the tailings. The lower δ18OSO4 values were indicative of ferric iron (Fe3+) as oxidant and the possible incorporation of 16O into SO42− during its formation, most probably from snow melt or depleted rainwater. The δ34SSO4 values in the OZ (+2.3 to +2.4‰) suggested SO42− from pyrrhotite oxidation in the UOZ which has been subsequently mobilised to the LOZ. Low δ34S fractionation (+0.2 to +1.9‰) between SO42− in the OZ and pyrrhotite, as well as the low δ18OSO4 values in the LOZ suggested the complete oxidation of pyrrhotite by Fe3+, signalling that previously, a low pH (<3) prevailed in the tailings. Mineralogical observations confirmed that pyrrhotite was completely oxidised in the UOZ, with the formation of hydrous ferric oxides (HFOs) coatings. The observed current high δ18OSO4 and pH (3.9–4.5) values in the UOZ were attributed to decreased oxidation rate and silicate buffering, limiting the availability of aqueous Fe3+ and subsequent formation of HFOs. The δ34SSO4 signatures of the water-soluble SO42− in the TZ and UUZ suggested the dissolution of gypsum which precipitated from a leachate from the weathering of danalite in the UOZ. In the middle UZ, the δ34SSO4 (−0.8 to +0.6‰) and δ18OSO4 (−1.8 to −1.0‰) signatures corresponded to SO42− from a mixture of pyrite, pyrrhotite and chalcopyrite oxidation by O2 at the LOZ (i.e. oxidation front). Negative δ34S fractionation values (−3.0 to −1.6‰) between these minerals and the water-soluble SO42− were attributed to the potential formation of intermediate S species, due to the partial oxidation of the sulphides. Consequently, the S accumulation in the LOZ could be due to the likely formation of the intermediate S species and secondary pyrite identified in this zone. The lower UZ coincided with the groundwater table and registered consistent negative δ34SSO4 (−2.6 to −1.8‰) and δ18OSO4 (−7.6 to −4.4‰) values. These signatures were hypothesised to be controlled by SO42− from the mineralisation of organic S in peat underneath the tailings and/or H2S oxidation, with possible contribution from sulphide oxidation in the tailings. This study highlights the usefulness of δ34S and δ18O as tracers of geochemical processes and environmental conditions that have existed in the tailings.
  •  
3.
  • Cabri, Louis J., et al. (författare)
  • A review of hexaferrum based on new mineralogical data
  • 2018
  • Ingår i: Mineralogical magazine. - : Mineralogical Society of Great Britain and Ireland. - 0026-461X .- 1471-8022. ; 82:3, s. 531-538
  • Tidskriftsartikel (refereegranskat)abstract
    • Hexaferrum, defined as an hcp Fe mineral containing varying amounts of Ru, Os, or Ir(Mochalov et al. 1998) was re-examined in the light of new analyses of similar alloys from the Loma Peguera and Loma Larga chromitites, in the central part of Loma Caribe peridotite, Cordillera Central of the Dominican Republic, together with a review of the phase chemistry inthe Fe-Ni-Ir and Fe-Ru-Ir systems. We conclude that the hcp (Fe,Ir) mineral corresponds to theε-phase of Raub et al. (1964) and should be differentiated from hexaferrum [(Fe,Os) and(Fe,Ru)] because it is separated by one to two miscibility gaps and therefore is not a continuous solid solution with Fe.
  •  
4.
  • Farré-de-Pablo, Júlia, et al. (författare)
  • Ophiolite hosted chromitite formed by supra-subduction zone peridotite –plume interaction
  • 2020
  • Ingår i: Geoscience Frontiers. - : Elsevier. - 1674-9871. ; 11:6, s. 2083-2102
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromitite bodies hosted in peridotites typical of suboceanic mantle (s.l. ophiolitic) are found in the northern and central part of the Loma Caribe Peridotite in the Cordillera Central of the Dominican Republic. These chromitites are massive pods of small size (less than a few meters across) and veins that intrude both dunite and harzburgite. Compositionally, they are high-Cr chromitites [Cr# = Cr/(Cr+Al) atomic ratio = 0.71–0.83] singularly enriched in TiO2 (up to 1.25 wt.%), Fe2O3 (2.77–9.16 wt.%) as well as some trace elements (Ga, V, Co, Mn, and Zn) and PGE (up to 4548 ppb in whole-rock). This geochemical signature is unknown for chromitites hosted in oceanic upper mantle but akin to those chromites crystallized from mantle plume derived melts. Noteworthy, the melt estimated to be in equilibrium with such chromite from the Loma Caribe chromitites is similar to basalts derived from different source regions of a heterogeneous Caribbean mantle plume. This mantle plume is responsible for the formation of the Caribbean Large Igneous Province (CLIP). Dolerite dykes with back-arc basin basalt (BABB) and enriched mid-ocean ridge basalt (E-MORB) affinities commonly intrude the Loma Caribe Peridotite, and are interpreted as evidence of the impact that the Caribbean plume had in the off-axis magmatism of the back-arc basin, developed after the Caribbean island-arc extension in the Late Cretaceous. We propose a model in which chromitites were formed in the shallow portion of the back-arc mantle as a result of the metasomatic reaction between the supra-subduction zone (SSZ) peridotites and upwelling plume-related melts.
  •  
5.
  •  
6.
  • García-Tudela, Matías, et al. (författare)
  • The chromitites of the Herbeira massif (Cabo Ortegal Complex, Spain) revisited
  • 2024
  • Ingår i: Ore Geology Reviews. - : Elsevier. - 0169-1368 .- 1872-7360. ; 170
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultramafic rocks of the Herbeira Massif in the Cabo Ortegal Complex (NW Iberia) host chromitite bodies. The textural and compositional study of the host rocks and the chromitites classified them into: (1) Type-I chromitites, forming massive pods of intermediate-Cr chromite (Cr# = 0.60–0.66) within dunites; and (2) Type-II chromitites forming semi-massive horizons of high-Cr chromite (Cr# = 0.75–0.82) interlayered with dunites and pyroxenites. Minor and trace elements (Ga, Ti, Ni, Zn, Co, Mn, V and Sc) contents in the unaltered chromite cores from both types show patterns very similar to fore-arc chromitites, mimicked by the host dunites and pyroxenites. Calculated parental melt compositions suggest that Type-I chromitites crystallized from a melt akin to fore-arc basalt (FAB), while Type-II chromitites originated from a boninite-like parental melt. Both melts are characteristic of a fore-arc setting affected by extension during rollback subduction and have been related to the development of a Cambrian-Ordovician arc. These chromitites are extremely enriched in platinum-group elements (PGE), with bulk-rock PGE contents between 2,460 and 3,600 ppb. Also, the host dunites and pyroxenites exhibit high PGE contents (167 and 324 ppb, respectively), which are higher than those from the primitive mantle and global ophiolitic mantle peridotites. The PGE enrichment is expressed in positively-sloped chondrite-normalized PGE patterns, characterized by an enrichment in Pd-group PGE (PPGE: Rh, Pt and Pd) over the Ir-group PGE (IPGE: Os, Ir and Ru) and abundant platinum-group minerals (PGM) dominated by Rh-Pt-Pd phases (i.e. Rh-Ir-Pt-bearing arsenides and sulfarsenides, Pt-Ir-Pd-base-metal-bearing alloys, and Pt-Pd-bearing sulfides). The PGM assemblage is associated with base-metal sulfides (mostly pentlandite and chalcopyrite) and occurs at the edges of chromite or embedded within the interstitial (serpentinized) silicate groundmass. Their origin has been linked to direct crystallization from a S-As-rich melt(s), segregated by immiscibility from evolved volatile-rich small volume melts during subduction. At c. 380 Ma, retrograde amphibolite-facies metamorphism occurred during the exhumation of the HP-HT rocks of the Capelada Unit, which affected chromitites and their host rocks but preserved the primary composition of chromite cores of the chromitites. This event contributed to local remobilization of PGE as suggested by the negative slope between Pt and Pd and high Pt/Pd ratios in the studied chromitites, and host dunites and pyroxenites. In addition, it promoted the alteration of primary PGM assemblage and the formation of secondary PGM. Nanoscale observations made by focused ion beam high-resolution transmission electron microscopy (FIB/HRTEM) analysis of a composite grain of Rh-bearing arsenide with PGE-base-metal bearing alloys suggest the mobilization and accumulation of small nanoparticles of PGE and base-metals that precipitated from metamorphic fluids forming PGE-alloys. Finally, we offer a comparison of the Cabo Ortegal chromitites with other ophiolitic chromitites involved in the Variscan orogeny, from the Iberian Peninsula to the Polish Sudetes. The studied Cabo Ortegal chromitites are similar to the Variscan chromitites documented in the Bragança (northern Portugal) and Kraubath (Styria, Austria) ophiolitic massifs.
  •  
7.
  • Salifu, Musah, et al. (författare)
  • Strontium (87Sr/86Sr) isotopes: A tracer for geochemical processes in mineralogically-complex mine wastes
  • 2018
  • Ingår i: Applied Geochemistry. - : Elsevier. - 0883-2927 .- 1872-9134. ; 99, s. 42-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Interpretation of geochemical data based primarily on elemental concentrations often lead to ambiguous results due to multiple potential sources including mineral weathering, atmospheric input, biological cycling, mineral precipitation and exchange processes. The 87Sr/86Sr ratio is however not fractionated by these processes. In this study, Sr isotope (87Sr/86Sr) ratios have been coupled with chemical data of Sr and Rb-bearing minerals, tailings and leachates (water-soluble) to gain insight into the geochemical processes occurring within the Yxsjöberg Cu-W mine tailings, Sweden. The tailings have been exposed to oxidizing conditions resulting in three geochemical zones namely (i) oxidized, (ii) transition and (iii) unoxidized zones. Leachates from the oxidized zone are acidic (pH = 3.6–4.5) and contain elevated concentrations of metals (e.g. Fe, Cu and Zn) and SO4. The low pH has also led to subsequent weathering of most silicates, releasing Al, Ca, Mg and Na into solution. The 87Sr/86Sr ratio in the tailings ranges from 0.84787 to 1.26640 in the oxidized zone, 0.92660–1.06788 in the transition zone, whilst the unoxidized zone has values between 0.76452 and 1.05169. For the leachates, the 87Sr/86Sr ratio ranges from 2.44479 to 5.87552 in the oxidized zone, 1.37404–1.68844 in the transition zone and 1.03697–2.16340 in the unoxidized zone. Mixing (between mineral weathering and atmospheric sources) was identified as the major process regulating the Sr composition of the tailings and leachates. The highly radiogenic signatures of the leachates in the oxidized zone suggests weathering of biotite, K-feldspar and muscovite. Despite the very radiogenic signatures in the oxidized zone, increments in Ca/K ratios, Be, Ce, Tl, Al, Fe and SO4 concentrations in the water-soluble phase were recorded in its lower parts which suggests the dissolution of amphibole, pyroxene, plagioclase, fluorite, gypsum, Al and Fe –(oxy) hydroxides as well as cation exchange by clay minerals. Presence of clay minerals has led to the partial retainment of radiogenic 87Sr/86Sr resulting in increased 87Sr/86Sr in the solid tailings material at these depths. The 87Sr/86Sr ratios of the water-soluble phase in the transition zone is similar to that of helvine and could indicate its dissolution. In the upper part of the oxidized zone, the 87Sr/86Sr ratios and trends of Be, Ca, SO4, Tl and Zn in the water-soluble phase suggest the dissolution of gypsum which precipitated from a leachate with the isotopic signature of helvine. In the lower part of the unoxidized zone, elevated concentrations of W were recorded suggesting scheelite weathering. But the 87Sr/86Sr ratios are higher than that expected from dissolution of scheelite and indicates additional processes. Possible sources include biotite weathering and groundwater. This study reveals that when interpreting geochemical processes in mine waste environments, 87Sr/86Sr should be considered in addition to chemical constituents, as this isotopic tracer offers better insights into discriminating between different solute sources.
  •  
8.
  • Zaccarini, Frederica, et al. (författare)
  • Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (Costa Rica) : Geodynamic implications
  • 2011
  • Ingår i: Geologica Acta. - 1695-6133 .- 1696-5728. ; 9:3-4, s. 407-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromitites associated with strongly altered peridotite from six distinct localities in the Santa Elena ultramaficnappe (Costa Rica) have been investigated for the first time. Santa Elena chromitites commonly display acompositional variation from extremely chromiferous (Cr/(Cr+Al)=0.81) to intermediate and aluminous(Cr/(Cr+Al)=0.54). This composition varies along a continuous trend, corresponding to calculated parental liquidswhich may have been derived from the differentiation of a single batch of boninitic magma with Cr-rich and(Al, Ti)-poor initial composition. Fractional precipitation of chromite probably occurred during differentiation ofthe boninitic melt and progressive metasomatic reaction with mantle peridotite. The distribution of platinum groupelements (PGE) displays the high (Os+Ir+Ru)/(Rh+Pt+Pd) ratio typical of ophiolitic chromitites and, consistently,the platinum group minerals (PGM) encountered are mainly Ru-Os-Ir sulfides and arsenides. Textural relations ofmost of the platinum group elements suggest crystallization at magmatic temperatures, possibly under relativelyhigh sulfur fugacity as indicated by the apparent lack of primary Os-Ir-Ru alloys.The chemical and mineralogical characteristics of chromitites from the Santa Elena ultramafic nappe have astrong affinity to podiform chromitites in the mantle section of supra-subduction-zone ophiolites. Calculatedparental melts of the chromitites are consistent with the differentiation of arc-related magmas, and do not supportthe oceanic spreading center geodynamic setting previously proposed by some authors.
  •  
9.
  • Domínguez-Carretero, Diego, et al. (författare)
  • Ultramafic-hosted volcanogenic massive sulfide deposits from Cuban ophiolites
  • 2022
  • Ingår i: Journal of South American Earth Sciences. - : Elsevier. - 0895-9811 .- 1873-0647. ; 119
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultramafic-hosted volcanogenic massive sulfide deposits (UM-VMS) located in the Havana-Matanzas ophiolite (Cuba) are the only known example of this type of mineralization in the Caribbean realm. UM-VMS from Havana-Matanzas are enriched in Cu, Ni, Co, Au, and Ag. The mineralization consists of massive sulfide bodies mostly composed of pyrrhotite and hosted by serpentinized upper mantle peridotites. Chemical composition of unaltered cores in Cr-spinel grains found within the massive sulfide mineralization and in the peridotite host indicates formation in the fore-arc region of the Greater Antilles volcanic arc. A first stage of serpentinization probably took place prior to the sulfide mineralization event. The UM-VMS mineralization formed by the near-complete replacement of the silicate assemblage of partially serpentinized peridotites underneath the seafloor. The sequence of sulfide mineralization has been divided into two stages. The first stage is characterized by a very reduced hydrothermal mineral assemblage consisting of pyrrhotite, Co–Ni–Fe diarsenides, chalcopyrite, Co-rich pentlandite, and electrum. In the second stage, pyrite and Co–Ni–Fe sulfarsenides partially replaced pyrrhotite and diarsenides, respectively, under a more oxidizing regime during the advanced stages of ongoing serpentinization. The proposed conceptual genetic model presented here can be useful for future exploration targeting this type of deposit in the Caribbean region and elsewhere.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 46
Typ av publikation
tidskriftsartikel (41)
konferensbidrag (5)
Typ av innehåll
refereegranskat (45)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Proenza, Joaquín A. (27)
Longo, Francisco (8)
Pujol-Solà, Núria (8)
González-Jiménez, Jo ... (7)
Garcia-Casco, Antoni ... (7)
visa fler...
Lewis, John F. (6)
Farre-de-Pablo, Juli ... (6)
Galí, Salvador (5)
Torro, Lisard (5)
Zaccarini, Frederica (5)
Alakangas, Lena (5)
Villanova-de-Benaven ... (4)
Garuti, Giorgio (4)
Domènech, Cristina (4)
Salifu, Musah (4)
Dold, Bernhard (3)
Torres, Harlison (3)
Proenza, J.A. (3)
Trifonov, Trifon (3)
Roqué Rosell, Josep (3)
Portillo Serra, Joaq ... (3)
Plana-Ruiz, Sergi (3)
Labrador, Manuel (2)
Ďurišová, Jana (2)
Font-Bardia, Mercé (2)
Baurier-Aymat, Sandr ... (2)
Ramirez, Australia (2)
Rodriguez, Jesus (2)
González-Jiménez, Jo ... (2)
Hällström, Lina (2)
Mörth, Carl-Magnus (2)
Aydin, Faruk (2)
Sen, Cüneyt (2)
Dokuz, Abdurrahman (2)
Kandemir, Raif (2)
Karsli, Orhan (2)
Sari, Bilal (2)
Domínguez-Carretero, ... (2)
Proenza, Joaquin (2)
Colás, Vanessa (2)
Llanes-Castro, Angél ... (2)
García-Tudela, Matía ... (2)
González-Jiménez, J. ... (2)
Weber, Marion (2)
Pašava, Jan (2)
Vymazalová, Anna (2)
Pratim Das, Partha (2)
Mendoza Gonzalvez, J ... (2)
Proenza, Joaquin Ant ... (2)
visa färre...
Lärosäte
Luleå tekniska universitet (46)
Stockholms universitet (1)
Språk
Engelska (46)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (46)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy