SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURVETENSKAP Geovetenskap och miljövetenskap Geokemi) ;pers:(Troll Valentin R.)"

Sökning: AMNE:(NATURVETENSKAP Geovetenskap och miljövetenskap Geokemi) > Troll Valentin R.

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Sahlström, Fredrik, et al. (författare)
  • Iron isotopes constrain sub-seafloor hydrothermal processes at the Trans-Atlantic Geotraverse (TAG) active sulfide mound
  • 2022
  • Ingår i: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sub-seafloor hydrothermal processes along volcanically active plate boundaries are integral to the formation of seafloor massive sulfide deposits and to oceanic iron cycling, yet the nature of their relationship is poorly understood. Here we apply iron isotope analysis to sulfide minerals from the Trans-Atlantic Geotraverse (TAG) mound and underlying stockwork, 26°N Mid-Atlantic Ridge, to trace hydrothermal processes inside an actively-forming sulfide deposit in a sediment-free mid-ocean ridge setting. We show that data for recently formed chalcopyrite imply hydrothermal fluid–mound interactions cause small negative shifts (<−0.1‰) to the δ56Fe signature of dissolved iron released from TAG into the North Atlantic Ocean. Texturally distinct types of pyrite, in turn, preserve a δ56Fe range from −1.27 to +0.56‰ that reflects contrasting precipitation mechanisms (hydrothermal fluid–seawater mixing vs. conductive cooling) and variable degrees of progressive hydrothermal maturation during the >20 kyr evolution of the TAG complex. The identified processes may explain iron isotope variations found in fossil onshore sulfide deposits.
  •  
3.
  •  
4.
  • Andersson, Magnus, et al. (författare)
  • Carbonatite ring-complexes explained by caldera-style volcanism
  • 2013
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbonatites are rare, carbonate-rich magmatic rocks that make up a minute portion of the crust only, yet they are of great relevance for our understanding of crustal and mantle processes. Although they occur in all continents and from Archaean to present, the deeper plumbing system of carbonatite ring-complexes is usually poorly constrained. Here, we show that carbonatite ring-complexes can be explained by caldera-style volcanism. Our geophysical investigation of the Alnö carbonatite ring-complex in central Sweden identifies a solidified saucer-shaped magma chamber at ∼3 km depth that links to surface exposures through a ring fault system. Caldera subsidence during final stages of activity caused carbonatite eruptions north of the main complex, providing the crucial element to connect plutonic and eruptive features of carbonatite magmatism. The way carbonatite magmas are stored, transported and erupt at the surface is thus comparable to known emplacement styles from silicic calderas.
  •  
5.
  • Jeffery, Adam J., et al. (författare)
  • The pre-eruptive magma plumbing system of the 2007–2008 dome-forming eruption of Kelut volcano, East Java, Indonesia
  • 2013
  • Ingår i: Contributions to Mineralogy and Petrology. - : Springer Science and Business Media LLC. - 0010-7999 .- 1432-0967. ; 166:1, s. 275-308
  • Tidskriftsartikel (refereegranskat)abstract
    • Kelut volcano, East Java, is an active volcanic complex hosting a summit crater lake that has been the source of some of Indonesia’s most destructive lahars. In November 2007, an effusive eruption lasting approximately 7 months led to the formation of a 260-m-high and 400-m-wide lava dome that displaced most of the crater lake. The 2007–2008 Kelut dome comprises crystal-rich basaltic andesite with a texturally complex crystal cargo of strongly zoned and in part resorbed plagioclase (An47–94), orthopyroxene (En64–72, Fs24–32, Wo2–4), clinopyroxene (En40–48, Fs14–19, Wo34–46), Ti-magnetite (Usp16–34) and trace amounts of apatite, as well as ubiquitous glomerocrysts of varying magmatic mineral assemblages. In addition, the notable occurrence of magmatic and crustal xenoliths (meta-basalts, amphibole-bearing cumulates, and skarn-type calc-silicates and meta-volcaniclastic rocks) is a distinct feature of the dome. New petrographical, whole rock major and trace element data, mineral chemistry as well as oxygen isotope data for both whole rocks and minerals indicate a complex regime of magma-mixing, decompression-driven resorption, degassing and crystallisation and crustal assimilation within the Kelut plumbing system prior to extrusion of the dome. Detailed investigation of plagioclase textures alongside crystal size distribution analyses provide evidence for magma mixing as a major pre-eruptive process that blends multiple crystal cargoes together. Distinct magma storage zones are postulated, with a deeper zone at lower crustal levels or near the crust-mantle boundary (>15 km depth), a second zone at mid-crustal levels (~10 km depth) and several magma storage zones distributed throughout the uppermost crust (<10 km depth). Plagioclase-melt and amphibole hygrometry indicate magmatic H2O contents ranging from ~8.1 to 8.6 wt.% in the lower crustal system to ~1.5 to 3.3 wt.% in the mid to upper crust. Pyroxene and plagioclase δ18O values range from 5.4 to 6.7 ‰, and 6.5 to 7.6 ‰, respectively. A single whole rock analysis of the 2007–2008 dome lava gave a δ18O value of 7.6 ‰, whereas meta-basaltic and calc-silicate xenoliths are characterised by δ18O values of 6.2 and 10.3 ‰, respectively. Magmatic δ18O values calculated from individual pyroxene and plagioclase analyses range from 5.7 to 7.0 ‰, and 6.2 to 7.4 ‰, respectively. This range in O-isotopic compositions is explained by crystallisation of pyroxenes in the lower to mid-crust, where crustal contamination is either absent or masked by assimilation of material having similar δ18O values to the ascending melts. This population is mixed with isotopically distinct plagioclase and pyroxenes that crystallised from a more contaminated magma in the upper crustal system. Binary bulk mixing models suggest that shallow-level, recycled volcaniclastic sedimentary rocks together with calc-silicates and/or limestones are the most likely contaminants of the 2007–2008 Kelut magma, with the volcaniclastic sediments being dominant.
  •  
6.
  • Jolis, Ester Muñoz, et al. (författare)
  • Experimental simulation of magma-carbonate interaction beneath Mt. Vesuvius, Italy
  • 2013
  • Ingår i: Contributions to Mineralogy and Petrology. - : Springer Science and Business Media LLC. - 0010-7999 .- 1432-0967. ; 166:5, s. 1335-1353
  • Tidskriftsartikel (refereegranskat)abstract
    • We simulated the process of magma-carbonate interaction beneath Mt. Vesuvius in short duration piston-cylinder experiments under controlled magmatic conditions (from 0 to 300 s at 0.5 GPa and 1,200 A degrees C), using a Vesuvius shoshonite composition and upper crustal limestone and dolostone as starting materials. Backscattered electron images and chemical analysis (major and trace elements and Sr isotopes) of sequential experimental products allow us to identify the textural and chemical evolution of carbonated products during the assimilation process. We demonstrate that melt-carbonate interaction can be extremely fast (minutes), and results in dynamic contamination of the host melt with respect to Ca, Mg and Sr-87/Sr-86, coupled with intense CO2 vesiculation at the melt-carbonate interface. Binary mixing between carbonate and uncontaminated melt cannot explain the geochemical variations of the experimental charges in full and convection and diffusion likely also operated in the charges. Physical mixing and mingling driven by exsolving volatiles seems to be a key process to promote melt homogenisation. Our results reinforce hypotheses that magma-carbonate interaction is a relevant and ongoing process at Mt. Vesuvius and one that may operate not only on a geological, but on a human timescale.
  •  
7.
  • Jolis, Ester M. (författare)
  • Magma-Crust Interaction at Subduction Zone Volcanoes
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The focus of this work is magma-crust interaction processes and associated crustal volatile release in subduction zone volcanoes, drawing on rock, mineral, and gas geochemistry as well as experimental petrology. Understanding the multitude of differentiation processes that modify an original magma during ascent to the surface is vital to unravel the contributions of the various sources that contribute to the final magmas erupted at volcanoes. In particular, magma-crust interaction (MCI) processes have been investigated at a variety of scales, from a local scale in the Vesuvius, Merapi, and Kelut studies, to a regional scale, in the Java to Bali segment of the Sunda Arc. The role of crustal influences is still not well constrained in subduction systems, particulary in terms of the compositional impact of direct magma crust interplay. To address this shortcoming, we studied marble and calc-silicate (skarn) xenoliths, and used high resolution short timescale experimental petrology at Vesuvius volcano. The marbles and calc-silicates help to identify different mechanisms of magma-carbonate and magma-xenolith interaction, and the subsequent effects of volatile release on potential eruptive behaviour, while sequential short-duration experiments simulate the actual processes of carbonate assimilation employing natural materials and controlled magmatic conditions. The experiments highlight the efficiency of carbonate assimilation and associated carbonate-derived CO2 liberated over short timescales.The findings at Merapi and Kelut demonstrate a complex magmatic plumbing system underneath these volcanoes with magma residing at different depths, spanning from the mantle-crust boundary to the upper crust. The erupted products and volcanic gas emissions enable us to shed light on MCI-processes and associated volatile release in these systems. The knowledge gained from studying individual volcanoes (e.g., Merapi and Kelut) is then tested on a regional scale and applied to the entire Java and Bali arc segment. An attempt is presented to distinguish the extent of source versus crustal influences and establish a quantitative model of late stage crustal influence in this arc segment.This thesis therefore hopes to contribute to our knowledge of magma genesis and magma-crust interaction (MCI) processes that likely operate in subduction zone systems worldwide. 
  •  
8.
  • Wiesmaier, Sebastian, et al. (författare)
  • Open-system processes in the differentiation of mafic magma in the Teide-Pico Viejo succession, Tenerife
  • 2013
  • Ingår i: Journal of the Geological Society. - : Geological Society of London. - 0016-7649 .- 2041-479X. ; 170:3, s. 557-570
  • Tidskriftsartikel (refereegranskat)abstract
    • Oceanic island basalts are commonly thought to differentiate by fractional crystallization, yet closed-system fractionation models have so far failed to reproduce major and trace element variations observed in mafic lavas from the Teide-Pico Viejo stratovolcano complex on Tenerife. Here, new high-precision plagioclase trace element data are fed into such a fractionation model. The results confirm that fractionation of phenocrysts found in the lavas does not reproduce trace element variations, in particular enrichment of Sr and Zr observed in the Teide-Pico Viejo mafic suite. This enrichment of Sr and Zr is tested by an energy-constrained recharge, assimilation and fractional crystallization (EC-RAFC) model at high T and low Lambda T intervals, consistent with previously determined magma storage beneath Tenerife at sub-Moho depths. Published mineral-melt equilibrium relations using the plagioclase anorthite content (0.4 < X-An < 0.8) constrain the temperature during differentiation. Gabbroic xenoliths found in Tenerife lavas are assumed as contaminant. Enrichment of Sr and Zr in the Teide mafic suite is reproduced by this combined assimilation and fractional crystallization model, as assimilation causes higher degrees of enrichment in incompatible trace elements than is possible by crystal fractionation alone. Recycling of plutonic roots may thus have significantly enriched trace elements in the primitive lavas of the Teide-Pico Viejo succession.
  •  
9.
  • Deegan, Frances, et al. (författare)
  • Boron isotope fractionation in magma via crustal carbonate dissolution.
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to −41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.
  •  
10.
  • Bedard, Jean H., et al. (författare)
  • High Arctic Large Igneous Province Alkaline Rocks in Canada : Evidence for Multiple Mantle Components
  • 2021
  • Ingår i: Journal of Petrology. - : Oxford University Press. - 0022-3530 .- 1460-2415. ; 62:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cretaceous High Arctic Large Igneous Province (HALIP) in Canada, although dominated by tholeiites (135-90 Ma), contains two main groups of alkaline igneous rocks. The older alkaline rocks (similar to 96 Ma) scatter around major fault and basement structures. They are represented by the newly defined Fulmar Suite alkaline basalt dykes and sills, and include Hassel Formation volcanic rocks. The younger alkaline group is represented by the Wootton Intrusive Complex (92.2-92.7 Ma), and the Audhild Bay Suite (83-73 Ma), both emplaced near the northern coast of Ellesmere Island. Fulmar Suite rocks resemble EM-type ocean island basalts (OIB) and most show limited crustal contamination. The Fulmar Suite shows increases of P2O5 at near-constant Ba-K-Zr-Ti that are nearly orthogonal to predicted fractionation- or melting-related variations, which we interpret as the result of melting composite mantle sources containing a regionally widespread apatite-bearing enriched component (P1). Low-P2O5 Fulmar Suite variants overlap compositionally with enriched HALIP tholeiites, and fall on common garnet Iherzolite trace element melting trajectories, suggesting variable degrees of melting of a geochemically similar source. High-P2O5 Hassel Formation basalts are unusual among Fulmar rocks, because they are strongly contaminated with depleted lower crust; and because they involve a high-P2O5-Ba-Eu mantle component (P2), similar to that seen in alkali basalt dykes from Greenland. The P2 component may have contained Ba-Eu-rich hawthorneite and/or carbonate minerals as well as apatite, and may typify parts of the Greenlandic sub-continental lithospheric mantle (SCLM). Mafic alkaline Audhild Bay Suite (ABS) rocks are volcanic and hypabyssal basanites, alkaline basalts and trachy-andesites, and resemble HIMU ocean island basalts in having high Nb, low Zr/Nb and low Sr-87/Sr-86(i). These mafic alkaline rocks are associated with felsic alkaline lavas and syenitic intrusions, but crustally derived rhyodacites and rhyolites also exist. The Wootton Intrusive Complex (WIC) contains geochemically similar plutonic rocks (alkali gabbros, diorites and anatectic granites), and may represent a more deeply eroded, slightly older equivalent of the ABS. Low-P2O5 ABS and WIC alkaline mafic rocks have flat heavy rare earth element (HREE) profiles suggesting shallow mantle melting; whereas High-P2O5 variants have steep HREE profiles indicating deeper separation from garnet-bearing residues. Some High-P2O5 mafic ABS rocks seem to contain the P1 and P2 components identified in Fulmar-Hassel rocks, whereas other samples trend towards possible High-P2O5 + Zr (PZr) and High-P2O5 + K2O (PK) components. We argue that the strongly alkaline northern Ellesmere Island magmas sampled mineralogically heterogeneous veins or metasomes in Greenlandic-type SCLM, which contained trace phases such as apatite, carbonates, hawthorneite, zircon, mica or richterite. The geographically more widespread apatite-bearing component (P1) could have formed part of a heterogeneous plume or upwelling mantle current that also generated HALIP tholeiites when melted more extensively, but may also have resided in the SCLM as relics of older events. Rare HALIP alkaline rocks with high K-Rb-U-Th fall on mixing paths implying strong local contamination from either Sverdrup Basin sedimentary rocks or granitic upper crust. However, the scarcity of potassic alkaline HALIP facies, together with the other trace element and isotopic signatures, provides little support for a ubiquitous fossil sedimentary subduction-zone component in the HALIP mantle source.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy