SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURVETENSKAP Kemi Miljökemi) ;lar1:(kth)"

Sökning: AMNE:(NATURVETENSKAP Kemi Miljökemi) > Kungliga Tekniska Högskolan

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafsson, Jon Petter, et al. (författare)
  • Towards a consistent geochemical model for prediction of uranium(VI) removal from groundwater by ferrihydrite
  • 2009
  • Ingår i: Applied Geochemistry. - Oxford : Pergamon Press. - 0883-2927 .- 1872-9134. ; 24:3, s. 454-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Uranium(VI), which is often elevated in granitoidic groundwaters, is known to adsorb strongly to Fe (hydr)oxides under certain conditions. This process can be used in water treatment to remove U(VI). To develop a consistent geochemical model for U(VI) adsorption to ferrihydrite, batch experiments were performed and previous data sets reviewed to optimize a set of surface complexation constants using the 3-plane CD-MUSIC model. To consider the effect of dissolved organic matter (DOM) on U(VI) speciation, new parameters for the Stockholm Humic Model (SHM) were optimized using previously published data. The model, which was constrained from available X-ray absorption fine structure (EXAFS) spectroscopy evidence, fitted the data well when the surface sites were divided into low- and high-affinity binding sites. Application of the model concept to other published data sets revealed differences in the reactivity of different ferrihydrites towards U(VI). Use of the optimized SHM parameters for U(VI)-DOM complexation showed that this process is important for U(VI) speciation at low pH. However in neutral to alkaline waters with substantial carbonate present, Ca–U–CO3 complexes predominate. The calibrated geochemical model was used to simulate U(VI) adsorption to ferrihydrite for a hypothetical groundwater in the presence of several competitive ions. The results showed that U(VI) adsorption was strong between pH 5 and 8. Also near the calcite saturation limit, where U(VI) adsorption was weakest according to the model, the adsorption percentage was predicted to be >80%. Hence U(VI) adsorption to ferrihydrite-containing sorbents may be used as a method to bring down U(VI) concentrations to acceptable levels in groundwater.
  •  
2.
  • Nilsson, Marita, et al. (författare)
  • Catalytic properties of Pd supported on ZnO/ZnAl2O4/Al2O3 mixtures in dimethyl ether autothermal reforming
  • 2009
  • Ingår i: Applied Catalysis B. - : Elsevier BV. - 0926-3373 .- 1873-3883. ; 86:02-jan, s. 18-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The catalytic properties of Pd supported on mixtures of zinc oxide, zinc aluminate, and alumina, prepared from gamma-alumina and zinc nitrate, were studied for autothermal reforming (ATR) of dimethyl ether (DME). The performance of the catalysts was tested in a small-scale reactor, using cordierite monoliths as substrate. The catalysts exhibited high activity and generated hydrogen-rich product gases with CO concentrations below 5 vol.% in the temperature range between 350 and 450 degrees C (at O-2:DME = 0.7, H2O:DME = 2.5, and GHSV = 15000 h(-1)). The highest DME conversion was obtained for a catalyst in which the support comprised mainly ZnAl2O4. Physical mixing of the catalysts with gamma-Al2O3 resulted in increased DME conversion but a lowering of the CO2 selectivity. The catalysts were characterized by CO chemisorption, liquid nitrogen adsorption, temperature-programmed desorption of ammonia, temperature-programmed reduction, transmission electron microscopy, and X-ray diffraction. It was found that decreasing surface area and decreasing number of acid sites, caused by thermal treatment during generation of the supports, did not affect the activity negatively. The high CO2 selectivity of the catalysts was correlated with PdZn alloy formation. 
  •  
3.
  • García García, Sandra, 1977- (författare)
  • Generation, stability and migration of montmorillonite colloids in aqueous systems
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In Sweden the encapsulated nuclear waste will be surrounded by compacted bentonite in the granitic host rock. In contact with water-bearing fractures the bentonite barrier may release montmorillonite colloids that may be further transported in groundwater. If large amounts of material are eroded from the barrier, the buffer functionality can be compromised. Furthermore, in the scenario of a leaking canister, strongly sorbing radionuclides, can be transported by montmorillonite colloids towards the biosphere. This thesis addresses the effects of groundwater chemistry on the generation, stability, sorption and transport of montmorillonite colloids in water bearing rock fractures. To be able to predict quantities of montmorillonite colloids released from the bentonite barrier in contact with groundwater of varying salinity, generation and sedimentation test were performed. The aim is first to gain understanding on the processes involved in colloid generation from the bentonite barrier. Secondly it is to test if concentration gradients of montmorillonite colloids outside the barrier determined by simple sedimentation experiments are comparable to generation tests. Identical final concentrations and colloid size distributions were achieved in both types of tests. Colloid stability is strongly correlated to the groundwater chemistry. The impact of pH, ionic strength and temperature was studied. Aggregation kinetics experiments revealed that for colloid aggregation rate increased with increasing ionic strength. The aggregation rate decreased with increasing pH. The temperature effect on montmorillonite colloid stability is pH-dependent. At pH≤4, the rate constant for colloid aggregation increased with increasing temperature, regardless of ionic strength. At pH≥10, the aggregation rate constant decreased with increasing temperature. In the intermediate pH interval, the aggregation rate constant decreased with increasing temperature except at the highest ionic strength, where it increased. The relationship between the rate constant and the ionic strength allowed the critical coagulation concentration (CCC) for Na- and Ca-montmorillonite to be determined. In order to distinguish the contribution of physical filtration and sorption to colloid retention in transport, the different retention mechanisms were quantified. Sorption on different representative minerals in granite fractures was measured for latex colloids (50, 100, 200 nm) and montmorillonite colloids as a function of ionic strength and pH. Despite of the negative charge in mineral surfaces and colloids, sorption was detected. The sorption is correlated to the mineral point of zero charge and the zeta potential of the colloids, and increases with increasing ionic strength and decreasing pH. In transport experiments with latex colloids in columns packed with fracture filling material, the retention by sorption could clearly be seen. In particular at low flow rates, when the contact time for colloids with the mineral surfaces were the longest, sorption contributed to retention of the transport significantly. The retention of latex colloids appeared to be irreversible in contrary to the reversible montmorillonite colloid retention. Generation, stability and sorption of the montmorillonite colloids are controlled by electrostatic forces; hence, the results were in qualitative agreement with DLVO.
  •  
4.
  • Cucarella Cabañas, Victor (författare)
  • Recycling Filter Substrates used for Phosphorus Removal from Wastewater as Soil Amendments
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis studied the viability of recycling filter substrates as soil amendments after being used in on-site systems for phosphorus (P) removal from wastewater. Focus was put on the materials Filtra P and Polonite, which are commercial products used in compact filters in Sweden. A prerequisite for this choice was to review filter materials and P sorption capacity. The filter substrates (Filtra P, Polonite and wollastonite tailings) were recycled from laboratory infiltration columns as soil amendments to a neutral agricultural soil and to an acid meadow soil to study their impacts on soil properties and yield of barley and ryegrass. The amendments tended to improve the yield and showed a liming effect, significantly increasing soil pH and the availability of P. In another experiment, samples of Filtra P and Polonite were equilibrated in batch experiments with the two soils in order to study the P dynamics in the soil-substrate system.  Batch equilibrations confirmed the liming potential of Filtra P and Polonite and showed that improved P availability in soils was strongly dependent on substrate P concentration, phase of sorbed P, and soil type. Finally, samples of Polonite used for household wastewater treatment were recycled as soil amendments to a mountain meadow and to an agricultural field for wheat cropping. The liming effect of Polonite was confirmed under field conditions and the results were similar to those of lime for the mountain meadow soil. However, the results were quite different for the agricultural field, where Polonite did not affect soil pH or any other chemical and physical soil properties investigated and had no impact on wheat yield and quality. The results from field experiments suggested that Polonite can be safely recycled to meadows and cropping fields at rates of 5-10 ton ha-1 but long-term studies are needed to forecast the effects of accumulation.
  •  
5.
  • Cui, Daqing, et al. (författare)
  • Reductive immobilization of Se-79 by iron canister under simulated repository environment
  • 2009
  • Ingår i: Journal of Radioanalytical and Nuclear Chemistry. - : Springer Science and Business Media LLC. - 0236-5731 .- 1588-2780. ; 282:2, s. 349-354
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the fate of Se-79 in a repository-like environment, the interactions between iron canister surface with dissolved selenite (SeO3 (2-)) and selenate (SeO4 (2-)) in anaerobic solutions have been investigated. Se(IV) immobilization on iron surface was observed to be about 100 times faster than that of Se(VI) at same conditions. An iron surface coated with a FeCO3 layer corrosion product is more reactive than a polished iron to immobilize Se(IV) and Se(VI). The reacted iron surfaces were analysed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Raman spectrometry and micro-X-ray Absorption Spectroscopy (XAS). The result show that Se(IV) and Se(VI) were reduced and precipitated. The dominating phase was found to be FeSe2..
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy