SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(SOCIAL SCIENCES Educational Sciences Didactics) ;pers:(Eriksson Inger 1952)"

Sökning: AMNE:(SOCIAL SCIENCES Educational Sciences Didactics) > Eriksson Inger 1952

  • Resultat 1-10 av 57
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Inger, 1952-, et al. (författare)
  • Enriching ‘learning activity’ with ‘epistemic practices’ – enhancing students’ epistemic agency and authority
  • 2016
  • Ingår i: Nordic Journal of Studies in Educational Policy. - : Informa UK Limited. - 2002-0317. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This article is an unchanged, re-published version of: Inger Eriksson & Viveca Lindberg, ‘Enriching learning activities with epistemic practices – enhancing students’ epistemic agency and authority’, with Maja Elmgren, Maria Folke-Fichtelius, Stina Hallsén, Henrik Román (2016), Att ta utbildningens komplexitet på allvar. En vänskrift till Eva Forsberg, Uppsala Universitet: Uppsala Studies in Education 138.
  •  
2.
  • Hultén, Magnus, 1970-, et al. (författare)
  • Animerad kemi : Elever i grundskolans tidiga år förklarar kemiska samband
  • 2020
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • Kemi har under stora delar av 1900-talet varit ett ämne som elever tidigast mötte i årskurs 5. Då behandlades ofta fenomen som smältning, stelning, kokning och avdunstning. Dessutom studerades egenskaper hos luft och vatten. Att elever innan de börjar högstadiet skulle resonera kring dessa fenomen i termer av vad som sker på submikronivå, med hjälp av antaganden om enkla partikelmodeller, har aldrig varit ett uttalat mål för undervisningen i kemi förrän introduktionen av Lgr 11. I den här studien har en grupp bestående av två lärare, en rektor och fyra forskare utformat och genomfört undervisning om egenskaper hos luft samt fenomenen smältning och stelning med elever i årskurs 3 och 4. Eleverna har inte bara beskrivit det som skett med egna ord, utan också lärt sig att beskriva det som sker på submikronivå i ord och bild. För att kunna göra detta har de, tillsammans med läraren, utvecklat enkla partikelmodeller. Projektet har kallats "Animerad kemi” och är ett forskningsprojekt finansierat av Skolforskningsinstitutet.
  •  
3.
  • Eriksson, Inger, 1952-, et al. (författare)
  • Challenges when implementing the Elkonin-Davydov curriculum in mathematics
  • 2022
  • Ingår i: The relation between mathematics education research and teachers’ professional development. - Linköping : Svensk förening för matematikdidaktisk forskning (SMDF). ; , s. 121-124, s. 121-124
  • Konferensbidrag (refereegranskat)abstract
    • Teachers interested in developing students’ possibilities to take part in joint discussions in problem-solving often have to deal with challenges regarding norms in the mathematics classrooms. Dominating classroom norms is a factor in mathematics teaching, be it of social or sociomathematical type. Here we address challenges in relation to norms experienced when attempting to create possibilities for mathematics learning, starting at a general and algebraical point rather than a specific and arithmetical one. We draw on two projects that explored the Elkonin-Davydov curriculum in Swedish classrooms. The results indicate that norms, of different kinds, are impedimental in different ways, when performing a theoretical work in mathematics teaching. 
  •  
4.
  • Dessen Jankell, Lotta, 1970- (författare)
  • Förstå verkligheten som system : - att utveckla gymnasieelevers systemgeografiska kunnande genom geografiundervisning
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This doctoral thesis is concerned with how upper secondary students in Sweden develop system geographical knowing through Geography teaching, where complex issues such as climate change are dealt with. In many countries, these issues are particularly relevant for the school subject of Geography since the subject is responsible for issues that involve system changes. These issues involve a complex web of aspects and dimensions so it is challenging for students to develop indepth holistic understandings. Commonly, students are left alone to synthesise the various parts into a whole. Systems thinking is suggested as an approach to dealing with these challenges, but there is little research on what such thinking implies in Geography teaching, or what students need to experience to develop this knowing. This educational design study departs from practice theory to explore and broaden systems thinking in Geography teaching by introducing a model task with connection web models that combine system dynamic causality, soft systems thinking, and spatial dimensions in a new way. The model task was developed and tested empirically in two upper secondary schools in Sweden. Research data consist of interviews and recordings of the students’ work with connection web models as a way of exploring complex issues. Findings from the study are presented in four peer-reviewed articles that together answer the two research questions: i) what does it mean to become system geographically knowledgeable when managing complex geographical issues? and ii) how can Geography teaching be designed to develop students’ system geographical knowing? Article I proposes a subject didactic model where the systems concept and other geographical concepts were used as organising tools to design Geography teaching. The model was developed in collaboration with Geography teachers and was used for designing the teaching interventions in the present study. Article II contributes findings from a series of lessons where the connection web model was introduced and presents four qualitatively different aspects of knowing that are critical for students to be able to use the model. For instance, being able to discern different causal characters of connections, to use place and scale as analytical tools, and to interpret the holistic pattern of interwoven connections. Article III analyses three different teaching designs and presents four design principles that teachers can use to support the development of the students’ system geographical knowing and overcome challenges that have been identified. Article IV presents findings about how the students experience the phenomenon of using the connection web models as a way of managing complex issues. Three different ways of experiencing the phenomenon are presented as well as critical aspects that students need to experience to qualify their knowing. This doctoral thesis broadens the view on what systems thinking can mean in the integrated and spatial school subject of Geography and contributes didactic models for teachers and researchers to use to develop the students’ knowing. The study argues that system geographical knowing is relevant for students to better understand complex issues concerning system changes. Finally, it is argued that connection web models have the potential to function as learning models if the model work is considered as a long-term process.
  •  
5.
  • Eriksson, Helena, et al. (författare)
  • Matematik som teoretiskt arbete - utveckling av matematiska modeller för rationella tal i åk 4
  • 2016
  • Ingår i: Forskning om undervisning och lärande. - 2000-9674 .- 2001-6131. ; 4:1, s. 6-24
  • Tidskriftsartikel (refereegranskat)abstract
    • The teaching of rational numbers to young students (grade 4-6) is known to be difficult. It is for instance difficult for students to understand that fractions and decimal numbers may represent the same value, or that fraction has a specific place on the number line, i.e. that it is a number among other numbers. The purpose of this article is to discuss and exemplify how students can be involved in a theoretical exploration of fractions as numbers. The basis of the students’ exploration was a designed situation where they were to make measurements of wooden rods where the measurements did not make an equal, i.e. “a little bit” was missing. With these measurements students in joint discussions were able to design a general model for fractions. Such a model could be used as a tool in discussions of “the whole” and “its parts” in fractions. The article is based on data from a series of Learning studies conducted in a grade 4 in an intercultural school in 2012-2013.
  •  
6.
  • Eriksson, Inger, 1952-, et al. (författare)
  • Algebraic developmental teaching an example from a grade one classroom
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • The issue in this paper is grade one students´ emerging understanding of the equal sign in an algebraic meaning inspired by the Davydov curriculum. The mainstream understanding that young students must start with arithmetic, mainly through operations with quantity and numbers in order to develop both an understanding of numbers and to develop a pre-algebraic thinking has been questioned during the latest decades. What if the arithmetic foundations in the mathematics teaching in themselves create problems for some students in relation to developing and expanding a theoretical thinking and reasoning beyond concrete numeric operations? What if such problems hinder students to develop a more comprehensive understanding of numbers and different number systems; mathematical structures; symbols and models as tools for mathematical work? Vygotsky and his contemporary colleagues argued, as a numbers of researchers internationally, that through an early introduction to algebraic work and reasoning students are given the opportunity to develop a theoretical understanding that will function as a foundation for all kinds of arithmetic operations as well as for algebraic reasoning and problem-solving. This paper reports preliminary results from a pilotstudy in a Swedish grade one that indicates that students when working with assignments inspired by the Davydov programme gave examples of an algebraic reasoning in relations to the equal sign that students in the parallel class did not master. When students in an interview (3 month of project) were presented to expressions as A+B=C and M+N= P for the first time all but one of the 28 could, in relation to artefacts/signs, exemplify in a multiple ways the expressions and argue how they know if it was true or not. The parallel class (28) were introduced to the equal sign with numbers as presented in the textbook (algebraic traditions). When shown the expressions A+B=C only few students related that to a mathematics -most associated the expressions to the alphabet.
  •  
7.
  • Eriksson, Inger, 1952- (författare)
  • Analysing vocational knowing with help of learning studies
  • 2014
  • Ingår i: Book of Abstracts. ; , s. 26-26
  • Konferensbidrag (refereegranskat)abstract
    • The issue of this presentation is to discuss how learning study can function as a tool for expanding a didactical understanding of theoretical and practical aspects of knowing. By tradition much vocational knowing is described and perceived in dichotomised terms as practical or theoretical. Taking an activity theoretical perspective (CHAT) this type of dichotomies is problematic since knowledge is seen as developed and used in a specific activity or practice. Thus, knowing must be regarded as complex, multi facetted (multi-voiced) and situational where, theoretical aspects are built into artefacts as professional language, models, and of course physical tools ect. Knowing how to use, value and assess (and develop) the practice-specific artefacts is demanding both a “theoretical” and “practical” knowing. In this presentation this issues will be discussed in relation to an example from a learning study in home economics where students knowing of how to prepare a cold emulsion (exemplified as mayonnaise) where focused.Learning study is a teacher led model developed to improve teaching practices in a way that enhances students learning. The model is interventionist– aiming to develop teaching and it is iterative – consisting of repeated analysis, design, evaluation and revisions of a lesson. Further, the model has a special focus on how the content is treated by teachers and students in the on-going classroom interactions, how tools are used and what subject specific content is made available for the students. The core of a learning study is the so-called ‘object of learning’ (OL). The object of learning needs to be identified and analysed both in relation to the historically and culturally developed knowing (in this case cold emulsions) and students’ actual understanding of the targeted knowledge. This identification and analysis is led by questions as: what in the targeted knowing is difficult for the students to understand and master? What do students understand and perhaps misunderstand? What knowing is built into the tools and rules? What do a knowledgeable person master and how?If the research and development is focusing the meaning of knowing and the relation between practical and theoretical aspects of knowing the identification and analysis of an OL can help teachers and researchers to develop subject specific didactical knowledge. In order to understand the knowing embedded in i.e. making a cold emulsion the students simultaneously need to master both the manual tools as well as the theoretical principles of a cold emulsion.
  •  
8.
  • Eriksson, Inger, 1952- (författare)
  • Att synliggöra algebraiska idéer i klassrummet med hjälp av lärandemodeller – ett exempel från åk 1 i Skola 91
  • 2020
  • Konferensbidrag (refereegranskat)abstract
    • Jane Schmittau och Anne Morris (2004), som troligen är de första forskarna som har prövat på Davydovs (2008) matematiska program utanför en rysk kontext, beskriver att idén är att elever först behöver utveckla ett sådant teoretiskt tänkande som Vygotsky säger utgör essensens i algebra, t.ex. behöver eleverna lära sig lösa ekvationer genom att uppmärksamma dess underliggande struktur och att förstå att en bokstav i ett uttryck representerar ett godtyckligt tal. Om nu elever tidigt behöver utveckla ett algebraiskt tänkande rörande exempelvis ekvationer så ställer det speciella krav på undervisningen. Davydov (2008) utvecklade vad som idag kallas lärandeverksamhet och centralt i denna är a) principen om att eleverna genom att först förstå det generella (strukturella och relationell) i ett fenomen senare med förtrogenhet kan tillämpa detta på olika konkreta situationer (ascend from the abstract to the concrete, a.a. s. 101); b) att de abstrakta strukturerna/relationerna behöver visualiseras i så kallade lärandemodeller för elevernas kollektiva utforskande; c) att teoretiskt tänkande bygger på reflektioner och att en reflektion alltid (i någon mening) först är social, vilket motiverar ett kollektivt arbete; d) att läraren kan inte ge ett problem åt eleverna utan eleverna behöver utveckla agens genom att själva (med lärarens stöd) identifiera vad det är som är problematiskt i det som läraren presenterar.Det övergripande syftet med detta paper är att exemplifiera och diskutera hur lärandemodeller kan bidra till att elevers kollektiva reflektioner kan synliggöras och vidareutvecklas i helklassdiskussioner. Frågeställningar: Vilka algebraiska idéer relaterat till ekvationer, såsom relationen helhet-delar och begreppet okänt tal kan visualiseras i en lärandemodell och därmed utforskas i en lärandeverksamhet? Vilka aspekter av lärarens och eleverna gemensamma handlingar främjar elevernas förståelse av de strukturella aspekterna som finns inbäddat i en lärandemodell?Data utgörs av en videofilmad och transkriberad matematiklektion i åk 1 i Skola 91 i Moskva våren 2017. Materialet analyserats i ett lärandeverksamhetsteoretiskt perspektiv av mig och Natalia Tabachnikova (den lärare som varit med och utveckla Davydovs program för de yngsta). Hela lektionen organiserades kring tre schematiska figurer som byggde på en och samma lärandemodell .Den första frågan som riktades till eleverna var: På vilket sätt är de här tre figurerna lika? När eleverna identifierat helhet-del strukturen (barnen visste redan sedan tidigare x betecknade ett okänt tal) fick de tyst välja en av figurerna och i relation till den skriva en berättelse på en konkret situation som kunde stämma med figuren de valt? Eleverna fick sedan läsa upp sin berättelse medan övriga elever skulle gissa vilken figur som stämde med berättelsen. Eleverna skulle därefter skriva ett program för en dator (en ekvationsformel) så att den skulle kunna räkna ut värdet på x. Slutlige ställde läraren en fråga om hur det kom sig att de hade så många berättelser som passade till samma ekvation. Det huvudsakliga resultatet visar att eleverna genom att de kollektivt kunde bygga vidare på varandras argument. Eleverna, genom att peka och förklara i lärandemodellen, kunde utforska den generella helhet-del strukturen i en ekvation men de kunde också se att en och samma ekvation kan beteckna olika situationer (ligga till grund för olika berättelser). ReferenserDavydov, V. V. (2008). Problems of developmental instruction. A theoretical and experimental psychological study. New York: Nova Science Publishers, Inc.Schmittau, J., & Morris, A. (2004). The development of algebra in the elementary mathematics curriculum of V. V. Davydov. The Mathematics Educator, 8(1), 60–87.
  •  
9.
  • Eriksson, Inger, 1952-, et al. (författare)
  • Designing algebraic tasks for 7-year-old students – a pilot project inspired by Davydov’s learning activity concept
  • 2017
  • Ingår i: International Journal for Mathematics Teaching and Learning. - 1473-0111. ; 18:2, s. 257-272
  • Tidskriftsartikel (refereegranskat)abstract
    • The issue of this article is to identify and discuss what conditions may be necessary to build into tasks to make it likely for students to be involved in an algebraic Learning Activity inspired by Davydov. Data from a pilot study was used in which a group of students (N=28) in grade 1 (7-year-olds) were invited to participate in discussions and laborations of how to decide whether two or more variables are equal or not, and making unequal “variables” equal by the help of measurement, abstract symbols and relational material. Three tasks were designed and from the analysis we will highlight five requirements for tasks that have the potential to enable students to engage in an algebraic learning activity.
  •  
10.
  • Eriksson, Inger, 1952-, et al. (författare)
  • Editorial
  • 2017
  • Ingår i: International Journal for Mathematics Teaching and Learning. - 1473-0111. ; 18:2, s. 132-135
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • This special issue is devoted to Vasily Davydov and the ground-breaking work that he introduced together with Daniil Elkonin. Their work, substantiated by many years of rigorous experiments, presents a theoretical extension and an educational concretisation of foremost Lev Semyonovich Vygotsky’s cultural historical theory and Alexei Leontiev’s activity theory. In the West, the curriculum in mathematics for the youngest students stemming from Davydov’s longitudinal series of experimentsis most known as the Davydov curriculumor program. Jean Schmittau together with her colleague Ann Morris is perhaps among the first to “import” the Davydov program into the US (Schmittau & Morris, 2004). There are other established implementations of the Davydov curriculume specially in the US, such as the project “Measure up” in Hawaii led by Barbara Dougherty (Dougherty & Slovin, 2004). More recently, Martin Simon (Simon & Placa, 2012) has been leading a five-year research project inquiry into the mechanisms of mathematics conceptual learning, where the Davydov curriculum is used as the main framework to shift the curriculum in mathematics education in the US. To date, the program has become known in other countries as well and a growing number of researchers are exploring its tenets and potential implications in mathematics education. Interestingly, the Davydov program is more frequently referred to within the research field of early algebraisation (see for e.g.,Cai & Knuth, 2011) and researchers are looking to Davydov’s heritage as a source of inspiration for new developments and new perspectives on what and how to teach elementary mathematics, thus introducing a new paradigm of psychological, mathematical, and pedagogical knowledge in the field of mathematics education.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 57
Typ av publikation
bokkapitel (19)
konferensbidrag (13)
tidskriftsartikel (9)
samlingsverk (redaktörskap) (4)
rapport (4)
bok (3)
visa fler...
licentiatavhandling (3)
annan publikation (1)
doktorsavhandling (1)
visa färre...
Typ av innehåll
övrigt vetenskapligt/konstnärligt (31)
refereegranskat (25)
populärvet., debatt m.m. (1)
Författare/redaktör
Lindberg, Viveca, 19 ... (12)
Berthén, Diana, 1956 ... (4)
Eriksson, Inger, Pro ... (4)
Osaki, Kalafunja (4)
Björnhammer, Sebasti ... (3)
visa fler...
Jägerskog, Ann-Sofie ... (3)
Tambour, Torbjörn (3)
Wettergren, Sanna (3)
Nyman, Martin (3)
Pettersson, Astrid, ... (3)
Jansson, Anders, 195 ... (3)
Wettergren, Sanna, 1 ... (3)
Björklund Boistrup, ... (2)
Eriksson, Helena (2)
Lindberg, Viveca (2)
Berg, Astrid (2)
Höjlund, Gunilla (2)
Fred, Jenny, 1972- (2)
Nordin, Anna-Karin (2)
Jansson, Anders (1)
Runesson, Ulla (1)
Andrée, Maria (1)
Andersson, Charlotta (1)
Tuominen, Jane (1)
Kullberg, Angelika, ... (1)
Hultén, Magnus, 1970 ... (1)
Ståhle, Ylva (1)
Berg, Astrid, 1964- (1)
Stolpe, Karin, PhD, ... (1)
Danielsson, Kristina ... (1)
Löfgren, Ragnhild (1)
Björk, Marie, 1963- (1)
Berthén, Diana, Fil ... (1)
Holmqvist, Mona, Pro ... (1)
Runesson Kempe, Ulla ... (1)
Carlgren, Ingrid, 19 ... (1)
Dessen Jankell, Lott ... (1)
Johansson, Patrik, P ... (1)
Sæther, Elin, Docent (1)
Ståhle, Ylva, 1956- (1)
Adolfsson Boman, Mar ... (1)
Hverven, Mona (1)
Polotskaia, Elena (1)
Nordin, Anna-Karin, ... (1)
Nyman, Martin, 1968- (1)
Fred, Jenny (1)
Lögren, Ragnhild (1)
Finnset, Torgunn, 19 ... (1)
Österlind, Eva (1)
visa färre...
Lärosäte
Stockholms universitet (55)
Göteborgs universitet (2)
Högskolan Dalarna (2)
Linköpings universitet (1)
Jönköping University (1)
Linnéuniversitetet (1)
Språk
Svenska (34)
Engelska (23)
Forskningsämne (UKÄ/SCB)
Samhällsvetenskap (57)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy