SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(TEKNIK OCH TEKNOLOGIER) AMNE:(Industriell bioteknik) ;mspu:(researchreview)"

Sökning: AMNE:(TEKNIK OCH TEKNOLOGIER) AMNE:(Industriell bioteknik) > Forskningsöversikt

  • Resultat 1-10 av 238
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Skoog, Emma, 1983, et al. (författare)
  • Biobased adipic acid – The challenge of developing the production host
  • 2018
  • Ingår i: Biotechnology Advances. - : Elsevier BV. - 0734-9750. ; 36:8, s. 2248-2263
  • Forskningsöversikt (refereegranskat)abstract
    • Adipic acid is a platform chemical, and is the most important commercial dicarboxylic acid. It has been targeted for biochemical conversion as an alternative to present chemical production routes. From the perspective of bioeconomy, several kinds of raw material are of interest including the sugar platform (derived from starch, cellulose or hemicellulose), the lignin platform (aromatics) and the fatty acid platform (lipid derived). Two main biochemical-based production schemes may be employed: (i) direct fermentation to adipic acid, or (ii) fermentation to muconic or glucaric acid, followed by chemical hydrogenation (indirect fermentation). This review presents a comprehensive description of the metabolic pathways that could be constructed and analyzes their respective theoretical yields and metabolic constraints. The experimental yields and titers obtained so far are low, with the exception of processes based on palm oil and glycerol, which have been reported to yield up to 50 g and 68 g adipic acid/L, respectively. The challenges that remain to be addressed in order to achieve industrially relevant production levels include solving redox constraints, and identifying and/or engineering enzymes for parts of the metabolic pathways that have yet to be metabolically demonstrated. This review provides new insights into ways in which metabolic pathways can be constructed to achieve efficient adipic acid production. The production host provides the chassis to be engineered via an appropriate metabolic pathway, and should also have properties suitable for the industrial production of adipic acid. An acidic process pH is attractive to reduce the cost of downstream processing. The production host should exhibit high tolerance to complex raw material streams and high adipic acid concentrations at acidic pH.
  •  
2.
  • Hong, Kuk-ki, 1976, et al. (författare)
  • Metabolic Engineering of Saccharomyces cerevisiae: A Key Cell Factory Platform for Future Biorefineries
  • 2012
  • Ingår i: Cellular and Molecular Life Sciences. - : Springer Science and Business Media LLC. - 1420-9071 .- 1420-682X. ; 69:16, s. 2671-2690
  • Forskningsöversikt (refereegranskat)abstract
    • Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.
  •  
3.
  • Westman, Johan, 1983, et al. (författare)
  • Current progress in high cell density yeast bioprocesses for bioethanol production
  • 2015
  • Ingår i: Biotechnology journal. - : Wiley. - 1860-6768 .- 1860-7314. ; 10:8, s. 1185-1195
  • Forskningsöversikt (refereegranskat)abstract
    • High capital costs and low reaction rates are major challenges for establishment of fermentation-based production systems in the bioeconomy. Using high cell density cultures is an efficient way to increase the volumetric productivity of fermentation processes, thereby enabling faster and more robust processes and use of smaller reactors. In this review, we summarize recent progress in the application of high cell density yeast bioprocesses for first and second generation bioethanol production. High biomass concentrations obtained by retention of yeast cells in the reactor enables easier cell reuse, simplified product recovery and higher dilution rates in continuous processes. High local cell density cultures, in the form of encapsulated or strongly flocculating yeast, furthermore obtain increased tolerance to convertible fermentation inhibitors and utilize glucose and other sugars simultaneously, thereby overcoming two additional hurdles for second generation bioethanol production. These effects are caused by local concentration gradients due to diffusion limitations and conversion of inhibitors and sugars by the cells, which lead to low local concentrations of inhibitors and glucose. Quorum sensing may also contribute to the increased stress tolerance. Recent developments indicate that high cell density methodology, with emphasis on high local cell density, offers significant advantages for sustainable second generation bioethanol production.
  •  
4.
  • Ferreira, Sofia, et al. (författare)
  • Metabolic engineering strategies for butanol production in Escherichia coli
  • 2020
  • Ingår i: Biotechnology and Bioengineering. - : Wiley. - 0006-3592 .- 1097-0290. ; 117:8, s. 2571-2587
  • Forskningsöversikt (refereegranskat)abstract
    • The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.
  •  
5.
  • Skvaril, Jan, 1982-, et al. (författare)
  • Applications of near-infrared spectroscopy (NIRS) in biomass energy conversion processes : A review
  • 2017
  • Ingår i: Applied spectroscopy reviews (Softcover ed.). - : Informa UK Limited. - 0570-4928 .- 1520-569X. ; 52:8, s. 675-728
  • Forskningsöversikt (refereegranskat)abstract
    • Biomass used in energy conversion processes is typically characterized by high variability, making its utilization challenging. Therefore, there is a need for a fast and non-destructive method to determine feedstock/product properties and directly monitor process reactors. The near-infrared spectroscopy (NIRS) technique together with advanced data analysis methods offers a possible solution. This review focuses on the introduction of the NIRS method and its recent applications to physical, thermochemical, biochemical and physiochemical biomass conversion processes represented mainly by pelleting, combustion, gasification, pyrolysis, as well as biogas, bioethanol, and biodiesel production. NIRS has been proven to be a reliable and inexpensive method with a great potential for use in process optimization, advanced control, or product quality assurance.
  •  
6.
  • Cámara, Elena, 1985, et al. (författare)
  • Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates
  • 2022
  • Ingår i: Biotechnology Advances. - : Elsevier BV. - 0734-9750. ; 57
  • Forskningsöversikt (refereegranskat)abstract
    • The use of renewable plant biomass, lignocellulose, to produce biofuels and biochemicals using microbial cell factories plays a fundamental role in the future bioeconomy. The development of cell factories capable of efficiently fermenting complex biomass streams will improve the cost-effectiveness of microbial conversion processes. At present, inhibitory compounds found in hydrolysates of lignocellulosic biomass substantially influence the performance of a cell factory and the economic feasibility of lignocellulosic biofuels and chemicals. Here, we present and statistically analyze data on Saccharomyces cerevisiae mutants engineered for altered tolerance towards the most common inhibitors found in lignocellulosic hydrolysates: acetic acid, formic acid, furans, and phenolic compounds. We collected data from 7971 experiments including single overexpression or deletion of 3955 unique genes. The mutants included in the analysis had been shown to display increased or decreased tolerance to individual inhibitors or combinations of inhibitors found in lignocellulosic hydrolysates. Moreover, the data included mutants grown on synthetic hydrolysates, in which inhibitors were added at concentrations that mimicked those of lignocellulosic hydrolysates. Genetic engineering aimed at improving inhibitor or hydrolysate tolerance was shown to alter the specific growth rate or length of the lag phase, cell viability, and vitality, block fermentation, and decrease product yield. Different aspects of strain engineering aimed at improving hydrolysate tolerance, such as choice of strain and experimental set-up are discussed and put in relation to their biological relevance. While successful genetic engineering is often strain and condition dependent, we highlight the conserved role of regulators, transporters, and detoxifying enzymes in inhibitor tolerance. The compiled meta-analysis can guide future engineering attempts and aid the development of more efficient cell factories for the conversion of lignocellulosic biomass.
  •  
7.
  • Bengtsson-Palme, Johan, 1985 (författare)
  • Microbial model communities: To understand complexity, harness the power of simplicity
  • 2020
  • Ingår i: Computational and Structural Biotechnology Journal. - : Elsevier BV. - 2001-0370. ; 18, s. 3987-4001
  • Forskningsöversikt (refereegranskat)abstract
    • Natural microbial communities are complex ecosystems with myriads of interactions. To deal with this complexity, we can apply lessons learned from the study of model organisms and try to find simpler systems that can shed light on the same questions. Here, microbial model communities are essential, as they can allow us to learn about the metabolic interactions, genetic mechanisms and ecological principles governing and structuring communities. A variety of microbial model communities of varying complexity have already been developed, representing different purposes, environments and phenomena. However, choosing a suitable model community for one's research question is no easy task. This review aims to be a guide in the selection process, which can help the researcher to select a sufficiently well-studied model community that also fulfills other relevant criteria. For example, a good model community should consist of species that are easy to grow, have been evaluated for community behaviors, provide simple readouts and – in some cases – be of relevance for natural ecosystems. Finally, there is a need to standardize growth conditions for microbial model communities and agree on definitions of community-specific phenomena and frameworks for community interactions. Such developments would be the key to harnessing the power of simplicity to start disentangling complex community interactions.
  •  
8.
  • von Mentzer, Ula, 1995, et al. (författare)
  • Biomaterial Integration in the Joint: Pathological Considerations, Immunomodulation, and the Extracellular Matrix
  • 2022
  • Ingår i: Macromolecular Bioscience. - : Wiley. - 1616-5195 .- 1616-5187. ; 22:7
  • Forskningsöversikt (refereegranskat)abstract
    • Defects of articular joints are becoming an increasing societal burden due to a persistent increase in obesity and aging. For some patients suffering from cartilage erosion, joint replacement is the final option to regain proper motion and limit pain. Extensive research has been undertaken to identify novel strategies enabling earlier intervention to promote regeneration and cartilage healing. With the introduction of decellularized extracellular matrix (dECM), researchers have tapped into the potential for increased tissue regeneration by designing biomaterials with inherent biochemical and immunomodulatory signals. Compared to conventional and synthetic materials, dECM-based materials invoke a reduced foreign body response. It is therefore highly beneficial to understand the interplay of how these native tissue-based materials initiate a favorable remodeling process by the immune system. Yet, such an understanding also demands increasing considerations of the pathological environment and remodeling processes, especially for materials designed for early disease intervention. This knowledge will avoid rejection and help predict complications in conditions with inflammatory components such as arthritides. This review outlines general issues facing biomaterial integration and emphasizes the importance of tissue-derived macromolecular components in regulating essential homeostatic, immunological, and pathological processes to increase biomaterial integration for patients suffering from joint degenerative diseases.
  •  
9.
  • Jers, C., et al. (författare)
  • Production of 3-hydroxypropanoic acid from glycerol by metabolically engineered bacteria
  • 2019
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media SA. - 2296-4185. ; 7:MAY
  • Forskningsöversikt (refereegranskat)abstract
    • 3-hydroxypropanoic acid (3-HP) is a valuable platform chemical with a high demand in the global market. 3-HP can be produced from various renewable resources. It is used as a precursor in industrial production of a number of chemicals, such as acrylic acid and its many derivatives. In its polymerized form, 3-HP can be used in bioplastic production. Several microbes naturally possess the biosynthetic pathways for production of 3-HP, and a number of these pathways have been introduced in some widely used cell factories, such as Escherichia coli and Saccharomyces cerevisiae. Latest advances in the field of metabolic engineering and synthetic biology have led to more efficient methods for bio-production of 3-HP. These include new approaches for introducing heterologous pathways, precise control of gene expression, rational enzyme engineering, redirecting the carbon flux based on in silico predictions using genome scale metabolic models, as well as optimizing fermentation conditions. Despite the fact that the production of 3-HP has been extensively explored in established industrially relevant cell factories, the current production processes have not yet reached the levels required for industrial exploitation. In this review, we explore the state of the art in 3-HP bio-production, comparing the yields and titers achieved in different microbial cell factories and we discuss possible methodologies that could make the final step toward industrially relevant cell factories.
  •  
10.
  • Amiandamhen, Stephen, 1983-, et al. (författare)
  • Bioenergy production and utilization in different sectors in Sweden: A state of the art review
  • 2020
  • Ingår i: BioResources. - : University of North Carolina Press. - 1930-2126 .- 1930-2126. ; 15:4, s. 9834-9857
  • Forskningsöversikt (refereegranskat)abstract
    • In the continual desire to reduce the environmental footprints of human activities, research efforts to provide cleaner energy is increasingly becoming vital. The effect of climate change on present and future existence, sustainable processes, and utilizations of renewable resources have been active topics within international discourse. In order to reduce the greenhouse gases emissions from traditional materials and processes, there has been a shift to more environmental friendly alternatives. The conversion of biomass to bioenergy, including biofuels has been considered to contribute to the future of climate change mitigation, although there are concerns about carbon balance from forest utilization. Bioenergy accounts for more than one-third of all energy used in Sweden and biomass has provided about 60% of the fuel for district heating. Apart from heat and electricity supply, the transport sector, with about 30% of global energy use, has a significant role in a sustainable bioenergy system. This review presents the state of the art in the Swedish bioenergy sector based on literature and Swedish Energy Agency’s current statistics. The review also discusses the overall bioenergy production and utilization in different sectors in Sweden. The current potential, challenges, and environmental considerations of bioenergy production are also discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 238

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy