SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "FÖRF:(Katarina Persson) ;lar1:(lnu)"

Sökning: FÖRF:(Katarina Persson) > Linnéuniversitetet

  • Resultat 1-10 av 81
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kruse, Robert, 1972-, et al. (författare)
  • IL-8 and global gene expression analysis define a key role of ATP in renal epithelial cell responses induced by uropathogenic bacteria
  • 2014
  • Ingår i: Purinergic Signalling Purinergic Signalling. - Dordrect, Netherlands : Springer. - 1573-9538 .- 1573-9546. ; 10:3, s. 499-508
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent recognition of receptor-mediated ATP signalling as a pathway of epithelial pro-inflammatory cytokine release challenges the ubiquitous role of the TLR4 pathway during urinary tract infection. The aim of this study was to compare cellular responses of renal epithelial cells infected with uropathogenic Escherichia coli (UPEC) strain IA2 to stimulation with ATP-gamma-S. A498 cells were infected or stimulated in the presence or absence of apyrase, that degrades extracellular ATP, or after siRNA-mediated knockdown of ATP-responding P2Y(2) receptors. Cellular IL-8 release and global gene expression were analysed. Both IA2 and A498 cells per se released ATP, which increased during infection. IA2 and ATP-gamma-S caused a similar to 5-fold increase in cellular release of IL-8 and stimulations performed in the presence of apyrase or after siRNA knockdown of P2Y(2) receptors resulted in attenuation of IA2-mediated IL-8 release. Microarray results show that both IA2 and ATP-gamma-S induced marked changes in gene expression of renal cells. Thirty-six genes were in common between both stimuli, and many of these are key genes belonging to classical response pathways of bacterial infection. Functional analysis shows that 88 biological function-annotated cellular pathways were identical between IA2 and ATP-gamma-S stimuli. Results show that UPEC-induced release of IL-8 is dependent on P2Y(2) signalling and that cellular responses elicited by UPEC and ATP-gamma-S have many identical features. This indicates that renal epithelial responses elicited by bacteria could be mediated by bacteria- or host-derived ATP, thus defining a key role of ATP during infection.
  •  
3.
  • Demirel, Isak, et al. (författare)
  • Expression of suppressor of cytokine signalling 3 (SOCS3) in human bladder epithelial cells infected with uropathogenic Escherichia coli
  • 2013
  • Ingår i: Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS). - : Wiley. - 0903-4641 .- 1600-0463. ; 121:2, s. 158-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Suppressor of cytokine signalling (SOCS) proteins inhibit pro-inflammatory signalling mediated by Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) pathways. To evade the immune response some pathogens appear to modify the host SOCS proteins. Uropathogenic Escherichia coli (UPEC) are able to subvert the host response evoked by bladder epithelial cells, but the mechanisms are not fully understood. The objective of this study was to investigate whether UPEC can modify the host SOCS and STAT3 response. Real time RT-PCR studies demonstrated an increased SOCS1 and SOCS3 expression in the isolated human bladder epithelial cell lines (RT-4 and 5637) in response to cytokines. UPEC strain IA2 increased SOCS3, but not SOCS1, mRNA levels with a peak at 6h after infection. The increase of SOCS3 was confirmed at the protein level by Western blotting. The UPEC strain IA2 caused a time-dependent decrease in the phosphorylation of STAT3. This study demonstrates that UPEC are able to affect SOCS3 and STAT3 signalling in human uroepithelial cells. The finding that UPEC are able to induce mediators involved in suppression of host cytokine signalling may help to elucidate how UPEC may circumvent the host response during urinary tract infection.
  •  
4.
  • Demirel, Isak, 1987-, et al. (författare)
  • Nitric oxide activates IL-6 production and expression in human renal epithelial cells
  • 2012
  • Ingår i: American Journal of Nephrology. - Basel, Switzerland : S. Karger. - 0250-8095 .- 1421-9670. ; 36:6, s. 524-530
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aims: Increased nitric oxide (NO) production or inducible form of NO synthase activity have been documented in patients suffering from urinary tract infection (UTI), but the role of NO in this infection is unclear. We investigated whether NO can affect the host response in human renal epithelial cells by modulating IL-6 production and mRNA expression. Methods: The human renal epithelial cell line A498 was infected with a uropathogenic Escherichia coli (UPEC) strain and/or the NO donor DETA/NO. The IL-6 production and mRNA expression were evaluated by ELISA and real-time RT-PCR. IL-6 mRNA stability was evaluated by analyzing mRNA degradation by real-time RT-PCR.Results: DETA/NO caused a significant (p < 0.05) increase in IL-6 production. Inhibitors of p38 MAPK and ERK1/2 signaling, but not JNK, were shown to significantly suppress DETA/NO-induced IL-6 production. UPEC-induced IL-6 production was further increased (by 73 ± 23%, p < 0.05) in the presence of DETA/NO. The IL-6 mRNA expression increased 2.1 ± 0.17-fold in response to DETA/NO, while the UPEC-evoked increase was pronounced (20 ± 4.5-fold). A synergistic effect of DETA/NO on UPEC-induced IL-6 expression was found (33 ± 7.2-fold increase). The IL-6 mRNA stability studies showed that DETA/NO partially attenuated UPEC-induced degradation of IL-6 mRNA.Conclusions: NO was found to stimulate IL-6 in renal epithelial cells through p38 MAPK and ERK1/2 signaling pathways and also to increase IL-6 mRNA stability in UPEC-infected cells. This study proposes a new role for NO in the host response during UTI by modulating the transcription and production of the cytokine IL-6.
  •  
5.
  • Kruse, Robert, 1972-, et al. (författare)
  • Adenosine triphosphate induced P2Y(2) receptor activation induces proinflammatory cytokine release in uroepithelial cells
  • 2012
  • Ingår i: Journal of Urology. - : Elsevier. - 0022-5347 .- 1527-3792. ; 188:6, s. 2419-2425
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: We characterized and identified the uroepithelial P2 receptor responsible for adenosine triphosphate mediated release of the cytokines interleukin-8 and 6.Materials and Methods: The human renal epithelial cell line A498 (ATCC™) was cultured and stimulated with different purinergic agonists with or without prior inhibition with different antagonists or signaling pathway inhibitors. Supernatant was analyzed for interleukin-8 and 6 by enzyme-linked immunosorbent assay. P2 receptor mRNA expression was assessed by real-time reverse transcriptase-polymerase chain reaction. The candidate receptor was knocked down with siRNA technology. Interleukin-8 and 6 responses were measured after purinergic stimulation of knocked down cells.Results: ATP and ATP-γ-S (Roche Diagnostics, Mannheim, Germany) were equipotent as inducers of interleukin-8 and 6 release. Agonist profile experiments using different P2 receptor agonists indicated that P2Y(2) was the main contributor to this release, although P2Y(11) and P2X(7) activation could not be excluded. Signaling pathway experiments showed that interleukin-8 release involved phospholipase C and inositol trisphosphate mediated signaling, indicating a P2Y receptor subtype. Antagonist experiments indicated P2Y(2) as the responsible receptor. Gene expression analysis of P2 receptors showed that strong expression of P2Y(2) receptor and subsequent knockdown of P2Y(2) receptor mRNA for 72 and 96 hours abrogated interleukin-8 and 6 release after purinergic stimulation with adenosine triphosphate-γ-S.Conclusions: Interleukin-8 and 6 release after purinergic stimulation in uroepithelial A498 cells is mediated through P2Y(2) receptor activation.
  •  
6.
  • Säve, Susanne, et al. (författare)
  • Activation of adenosine A2A receptors inhibits neutrophil transuroepithelial migration
  • 2011
  • Ingår i: Infection and Immunity. - : American Society for Microbiology. - 0019-9567 .- 1098-5522. ; 79:8, s. 3431-3437
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A(2A) receptors. In this study, we examined the role of adenosine and A(2A) receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A(1), A(2A), A(2B), and A(3) receptors), but A(3) receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A(2A) receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A(2A) receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A(2A) receptor activation, possibly through inhibition of NF-κB signaling pathways.
  •  
7.
  • Svensson, Lovisa, et al. (författare)
  • Role of flavohemoglobin in combating nitrosative stress in uropathogenic Escherichia coli : implications for urinary tract infection
  • 2010
  • Ingår i: Microbial Pathogenesis. - : Elsevier BV. - 0882-4010 .- 1096-1208. ; 49:3, s. 59-66
  • Tidskriftsartikel (refereegranskat)abstract
    • During the course of urinary tract infection (UTI) nitric oxide (NO) is generated as part of the host response. This study investigates the significance of the NO-detoxifying enzyme flavohemoglobin (Hmp) in protection of uropathogenic Escherichia coli (UPEC) against nitrosative stress. An hmp (J96Deltahmp) knockout mutant of UPEC strain J96 was constructed using single-gene deletion. The viability of J96Deltahmp was significantly reduced (P<0.001) compared to the wild-type strain after exposure to the NO-donor DETA/NO. The NO consumption in J96Deltahmp was significantly (P<0.001) impaired compared to J96wt. Screening UPEC isolates from patients with UTI revealed increased hmp expression in all patients. In a competition-based mouse model of UTI, the hmp mutant strain was significantly (P<0.05) out-competed by the wild-type strain. This study demonstrates, for the first time, that Hmp contributes to the protection of UPEC against NO-mediated toxicity in vitro. In addition, hmp gene expression occurs in UPEC isolates from the infected human urinary tract and UPEC that were hmp-deficient had a reduced ability to colonize the mouse urinary tract. Taken together the results suggest that NO detoxification by Hmp may be a fitness advantage factor in UPEC, and a potentially interesting target for development of novel treatment concepts for UTI.
  •  
8.
  • Svensson, Lovisa, et al. (författare)
  • The effect of nitric oxide on adherence of P-fimbriated uropathogenic Escherichia coli to human renal epithelial cells
  • 2010
  • Ingår i: BJU International. - Malden, USA : Wiley-Blackwell. - 1464-4096 .- 1464-410X. ; 105:12, s. 1726-1731
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To examine the effect of nitric oxide (NO), an endogenous component of the host defence in urinary tract infection, on the adherence of P-fimbriated uropathogenic Escherichia coli (UPEC) to human renal epithelial cells.Materials and Methods: Two wild-type UPEC strains (AD110 and IA2) and the P-fimbriated recombinant strain HB101pPIL-75 were used. Bacteria were allowed to adhere to the human renal epithelial cell line A498 and attachment was evaluated in the absence or presence of the NO donor DETA/NONOate (1 mm). Total RNA was extracted from NO-exposed bacteria in static urine cultures, followed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis of the papG gene that encodes the P-fimbriae adhesin PapG.Results: Bacterial adherence to A498 cells was fimbriae-dependent and the ability to agglutinate human P-1 positive erythrocytes confirmed that the used strains were P-fimbriated. UPEC strains AD110 and IA2 attached by a mean of 8 bacteria/cell and 20 bacteria/cell, respectively. In the presence of DETA/NONOate, the attachment of AD110 and IA2 to A498 cells was significantly reduced by a mean (sem) of 34 (3.9)% and 45 (14)%, respectively. The expression of papG was decreased after DETA/NONOate exposure as shown by semiquantitative RT-PCR.Conclusion: NO disrupted functional adhesion of P-fimbriated UPEC to kidney epithelial cells, suggesting that NO-production from epithelial cells in the urinary tract may limit bacterial colonization at the mucosal surface. The reduced adherence may involve transcriptional effects of NO on papG expression, but further studies are needed to establish the underlying mechanisms.
  •  
9.
  •  
10.
  • Säve, Susanne, et al. (författare)
  • Effects of Adenosine A(2A) and A(2B) Receptor Activation on Signaling Pathways and Cytokine Production in Human Uroepithelial Cells
  • 2010
  • Ingår i: Pharmacology. - : S. Karger AG. - 0031-7012 .- 1423-0313. ; 86:3, s. 129-137
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Adenosine A(2A) and A(2B) receptor subtypes have both been implicated in the modulation of inflammation. We examined adenosine A(2A) and A(2B) receptor expression, signaling pathways and the effect of adenosine A(2A) and A(2B) receptor activation on the uropathogenic Escherichia coli (UPEC)-stimulated IL-8 response in human uroepithelial cells (UROtsa). Methods: Receptor expression was examined by RT-PCR and Western blot, and IL-8 production, intracellular cAMP levels and phosphoproteins were measured by ELISA, EIA and multiplex immunoassay, respectively. Results: The adenosine A(1), A(2A) and A(2B) receptor subtypes were detected in UROtsa cells. The adenosine A(2A) receptor agonist CGS 21680 did not stimulate cAMP production but CREB phosphorylation was slightly increased. The adenosine A(2) receptor agonist CPCA induced a pronounced cAMP and CREB response. Furthermore, CGS 21680 but not CPCA decreased ERK 1/2 and STAT3 phosphorylation. UPEC infection stimulated the host IL-8 production but CPCA or CGS 21680 did not affect UPEC-evoked IL-8 production. Conclusions: Our data identified differences in signaling pathways evoked by adenosine A(2A) and A(2B) receptor activation. Activation of the adenosine A(2A) receptor inhibited STAT3 and ERK 1/2 phosphorylation, while the cAMP-CREB pathway was induced by adenosine A(2B) receptor activation. No anti-or proinflammatory effects were found for uroepithelial adenosine A(2A) or A(2B) receptors. Copyright (C) 2010 S. Karger AG, Basel
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 81

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy