SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "FÖRF:(Katarina Persson) ;pers:(Kruse Robert)"

Sökning: FÖRF:(Katarina Persson) > Kruse Robert

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Persson, Katarina, 1962-, et al. (författare)
  • Transcriptional alterations in bladder epithelial cells in response to infection with different morphological states of uropathogenic Escherichia coli
  • 2022
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Uropathogenic Escherichia coli (UPEC) may undergo a cyclic cascade of morphological alterations that are believed to enhance the potential of UPEC to evade host responses and re-infect host cell. However, knowledge on the pathogenic potential and host activation properties of UPEC during the morphological switch is limited. Microarray analysis was performed on mRNA isolated from human bladder epithelial cells (HBEP) after exposure to three different morphological states of UPEC (normal coliform, filamentous form and reverted form). Cells stimulated with filamentous bacteria showed the lowest number of significant gene alterations, although the number of enriched gene ontology classes was high suggesting diverse effects on many different classes of host genes. The normal coliform was in general superior in stimulating transcriptional activity in HBEP cells compared to the filamentous and reverted form. Top-scored gene entities activated by all three morphological states included IL17C, TNFAIP6, TNF, IL20, CXCL2, CXCL3, IL6 and CXCL8. The number of significantly changed canonical pathways was lower in HBEP cells stimulated with the reverted form (32 pathways), than in cells stimulated with the coliform (83 pathways) or filamentous bacteria (138 pathways). A host cell invasion assay showed that filamentous bacteria were unable to invade bladder cells, and that the number of intracellular bacteria was markedly lower in cells infected with the reverted form compared to the coliform. In conclusion, the morphological state of UPEC has major impact on the host bladder response both when evaluating the number and the identity of altered host genes and pathways.
  •  
2.
  • Demirel, Isak, 1987-, et al. (författare)
  • Activation of NLRP3 by uropathogenic Escherichia coli is associated with IL-1β release and regulation of antimicrobial properties in human neutrophils
  • 2020
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The NLRP3 inflammasome and IL-1β have recently been linked to the severity of uropathogenic Escherichia coli (UPEC)-mediated urinary tract infection (UTI). However, not much is known about the contribution of NLRP3 to the antimicrobial properties of neutrophils and the release of IL-1β during UPEC infection. The purpose of this study was to elucidate the mechanisms behind UPEC-induced IL-1β release from human neutrophils, and to investigate the contribution of the NLRP3 inflammasome in neutrophil-mediated inhibition of UPEC growth. We found that the UPEC strain CFT073 increased the expression of NLRP3 and increased caspase-1 activation and IL-1β release from human neutrophils. The IL-1β release was mediated by the NLRP3 inflammasome and by serine proteases in an NF-κB-and cathepsin B-dependent manner. The UPEC virulence factors α-hemolysin, type-1 fimbriae and p-fimbriae were all shown to contribute to UPEC mediated IL-1β release from neutrophils. Furthermore, inhibition of caspase-1 and NLRP3 activation increased neutrophil ROS-production, phagocytosis and the ability of neutrophils to suppress UPEC growth. In conclusion, this study demonstrates that UPEC can induce NLRP3 and serine protease-dependent release of IL-1β from human neutrophils and that NLRP3 and caspase-1 can regulate the antimicrobial activity of human neutrophils against UPEC.
  •  
3.
  • Demirel, Isak, 1987-, et al. (författare)
  • Activation of the NLRP3 Inflammasome Pathway by Uropathogenic Escherichia coli Is Virulence Factor-Dependent and Influences Colonization of Bladder Epithelial Cells
  • 2018
  • Ingår i: Frontiers in Cellular and Infection Microbiology. - : Frontiers Media S.A.. - 2235-2988. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The NLRP3 inflammasome and IL-1 beta release have recently been suggested to be important for the progression of urinary tract infection (UTI). However, much is still unknown regarding the interaction of UPEC and the NLRP3 inflammasome. The purpose of this study was to elucidate what virulence factors uropathogenic Escherichia coil (UPEC) use to modulate NLRP3 inflammasome activation and subsequent IL-1 beta release and the role of NLRP3 for UPEC colonization of bladder epithelial cells. The bladder epithelial cell line 5637, CRISPR/Cas9 generated NLRP3, caspase-1 and mesotrypsin deficient cell lines and transformed primary bladder epithelial cells (HBLAK) were stimulated with UPEC isolates and the non-pathogenic MG1655 strain. We found that the UPEC strain CFT073, but not MG1655, induced an increased caspase-1 activity and IL-1 beta release from bladder epithelial cells. The increase was shown to be mediated by et-hemolysin activation of the NLRP3 inflammasome in an NE-kappa B-independent manner. The effect of-hemolysin on IL-1 beta release was biphasic, initially suppressive, later inductive. Furthermore, the phase-locked type-1-fimbrial ON variant of CFT073 inhibited caspase-1 activation and IL-1 beta release. In addition, the ability of CFT073 to adhere to and invade NLRP3 deficient cells was significantly reduced compare to wild-type cells. The reduced colonization of NLRP3-deficient cells was type-1 fimbriae dependent. In conclusion, we found that the NLRP3 inflammasome was important for type-1 fimbriae-dependent colonization of bladder epithelial cells and that both type-1 fimbriae and alpha-hemolysin can modulate the activity of the NLRP3 inflammasome.
  •  
4.
  • Bang, Charlotte Sahlberg, 1967-, et al. (författare)
  • Global gene expression profiling and antibiotic susceptibility after repeated exposure to the carbon monoxide-releasing molecule-2 (CORM-2) in multidrug-resistant ESBL-producing uropathogenic Escherichia coli
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment of urinary tract infections is today a challenge due to the increasing prevalence of multidrug-resistant ESBL-producing uropathogenic Escherichia coli (UPEC). There is an urgent need for new treatment strategies for multidrug-resistant UPEC and preferably with targets that have low potential for development of resistance. Carbon monoxide-releasing molecules (CORMs) are novel and potent antibacterial agents. The present study examines the transcriptomic targets of CORM-2 in a multidrug-resistant ESBL-producing UPEC isolate in response to a single exposure to CORM-2 and after repeated exposure to CORM-2. The bacterial viability and minimal inhibitory concentration (MIC) were also examined after repeated exposure to CORM-2. Microarray analysis revealed that a wide range of processes were affected by CORM-2, including a general trend of down-regulation in energy metabolism and biosynthesis pathways and up-regulation of the SOS response and DNA repair. Several genes involved in virulence (ibpB), antibiotic resistance (marAB, mdtABC) and biofilm formation (bhsA, yfgF) were up-regulated, while some genes involved in virulence (kpsC, fepCEG, entABE), antibiotic resistance (evgA) and biofilm formation (artIP) were down-regulated. Repeated exposure to CORM-2 did not alter the gene expression patterns, the growth inhibitory response to CORM-2 or the MIC values for CORM-2, cefotaxime, ciprofloxacin and trimethoprim. This study identifies several enriched gene ontologies, modified pathways and single genes that are targeted by CORM-2 in a multidrug-resistant UPEC isolate. Repeated exposure to CORM-2 did not change the gene expression patterns or fold changes and the susceptibility to CORM-2 remained after repeated exposure.
  •  
5.
  • Demirel, Isak, 1987-, et al. (författare)
  • Transcriptional Alterations of Virulence-Associated Genes in Extended Spectrum Beta-Lactamase (ESBL)-Producing Uropathogenic Escherichia coli during Morphologic Transitions Induced by Ineffective Antibiotics
  • 2017
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • It is known that an ineffective antibiotic treatment can induce morphological shifts in uropathogenic Escherichia coli (UPEC) but the virulence properties during these shifts remain to be studied. The present study examines changes in global gene expression patterns and in virulence factor-associated genes in an extended spectrum beta-lactamase (ESBL)-producing UPEC (ESBL019) during the morphologic transitions induced by an ineffective antibiotic and in the presence of human primary bladder epithelial cells. Microarray results showed that the different morphological states of ESBL019 had significant transcriptional alterations of a large number of genes (Transition; 7%, Filamentation; 32%, and Reverted 19% of the entities on the array). All three morphological states of ESBL019 were associated with a decreased energy metabolism, altered iron acquisition systems and altered adhesion expression. In addition, genes associated with LPS synthesis and bacterial motility was also altered in all the morphological states. Furthermore, the transition state induced a significantly higher release of TNF-alpha from bladder epithelial cells compared to all other morphologies, while the reverted state was unable to induce INF-alpha release. Our findings show that the morphological shifts induced by ineffective antibiotics are associated with significant transcriptional virulence alterations in ESBL-producing UPEC, which may affect survival and persistence in the urinary tract.
  •  
6.
  • Sahlberg Bang, Charlotte, 1967-, et al. (författare)
  • Carbon monoxide releasing molecule-2 (CORM-2) inhibits growth of multidrug-resistant uropathogenic Escherichia coli in biofilm and following host cell colonization
  • 2016
  • Ingår i: BMC Microbiology. - : BioMed Central. - 1471-2180. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased resistance to antimicrobial agents is a characteristic of many bacteria growing in biofilms on for example indwelling urinary catheters or in intracellular bacterial reservoirs. Biofilm-related infections caused by multidrug-resistant bacteria, such as extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, are a major challenge. The aim of this study was to investigate if a carbon monoxide-releasing molecule (CORM-2) has antibacterial effects against ESBL-producing uropathogenic E. coli (UPEC) in the biofilm mode of growth and following colonization of host bladder epithelial cells.ResultsThe effect of CORM-2 was examined on bacteria grown within an established biofilm (biofilm formed for 24 h on plastic surface) by a live/dead viability staining assay. CORM-2 (500 μM) exposure for 24 h killed approximately 60 % of the ESBL-producing UPEC isolate. A non-ESBL-producing UPEC isolate and the E. coli K-12 strain TG1 were also sensitive to CORM-2 exposure when grown in biofilms. The antibacterial effect of CORM-2 on planktonic bacteria was reduced and delayed in the stationary growth phase compared to the exponential growth phase. In human bladder epithelial cell colonization experiments, CORM-2 exposure for 4 h significantly reduced the bacterial counts of an ESBL-producing UPEC isolate.ConclusionThis study shows that CORM-2 has antibacterial properties against multidrug-resistant UPEC under biofilm-like conditions and following host cell colonization, which motivate further studies of its therapeutic potential.
  •  
7.
  •  
8.
  • Demirel, Isak, 1987-, et al. (författare)
  • Ceftibuten-induced filamentation of extended spectrum beta lactamase (ESBL)-producing uropathogenic Escherichia coli alters host cell responses during an in vitro infection
  • 2015
  • Ingår i: Microbial Pathogenesis. - : Elsevier. - 0882-4010 .- 1096-1208. ; 78, s. 52-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Inadequate and delayed antibiotic treatment of extended spectrum beta-lactamase (ESBL)-producing isolates have been associated with increased mortality of affected patients. The purpose of this study was to compare the host response of human renal epithelial cells and polymorphonuclear leucocyte (PMN) cells when infected by ESBL-producing uropathogenic Escherichia coli (UPEC) isolates in the presence or absence of ineffective antibiotics.The renal epithelial cell line A498 and PMN cells were stimulated with ESBL-producing UPEC isolates in the presence or absence of three different antibiotics (trimetoprim, ceftibuten and ciprofloxacin). Host cell responses were evaluated as release of cytokines (IL-6, IL-8), reactive oxygen species (ROS), ATP and endotoxins. Bacterial morphology and PMN phagocytosis were evaluated by microscopy.In the presence of ceftibuten, 2 out of 3 examined ESBL-isolates changed their morphology into a filamentous form. The presence of ceftibuten enhanced IL-6, IL-8 and ROS-production from host cells, but only from cells stimulated by the filamentous isolates. The bacterial supernatant and not the filamentous bacteria per se was responsible for the increased release of IL-6, IL-8 and ROS. Increased endotoxin and ATP levels were found in the bacterial supernatants from filamentous isolates. Apyrase decreased IL-6 secretion from A498 cells and polymyxin B abolished the increased ROS-production from PMN cells. PMN were able to inhibit the bacterial growth of some ESBL-isolates in the presence of ceftibuten.In conclusion, antibiotic-induced filamentation of ESBL-producing UPEC isolates and the associated release of ATP and endotoxins can alter the host cell response in the urinary tract.
  •  
9.
  • Bang, Charlotte Sahlberg, 1967-, et al. (författare)
  • Multiresistant uropathogenic extended-spectrum β-lactamase (ESBL)-producing Escherichia coli are susceptible to the carbon monoxide releasing molecule-2 (CORM-2).
  • 2014
  • Ingår i: Microbial Pathogenesis. - London : Elsevier. - 0882-4010 .- 1096-1208. ; 66, s. 29-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon monoxide (CO) releasing molecules (CO-RMs) have been shown to inhibit growth of commensal Escherichia coli (E. coli). In the present study we examined the effect of CORM-2 on uropathogenic E. coli (UPEC) that produces extended-spectrum β-lactamase (ESBL). Viability experiments showed that CORM-2 inhibited the growth of several different ESBL-producing UPEC isolates and that 500 μM CORM-2 had a bactericidal effect within 4 h. The bactericidal effect of CORM-2 was significantly more pronounced than the effect of the antibiotic nitrofurantoin. CORM-2 demonstrated a low level of cytotoxicity in eukaryotic cells (human bladder epithelial cell line 5637) at the concentrations and time-points where the antibacterial effect was obtained. Real-time RT-PCR studies of different virulence genes showed that the expression of capsule group II kpsMT II and serum resistance traT was reduced and that some genes encoding iron acquisition systems were altered by CORM-2. Our results demonstrate that CORM-2 has a fast bactericidal effect against multiresistant ESBL-producing UPEC isolates, and also identify some putative UPEC virulence factors as targets for CORM-2. CO-RMs may be candidate drugs for further studies in the field of finding new therapeutic approaches for treatment of uropathogenic ESBLproducing E. coli.
  •  
10.
  • Demirel, Isak, 1987- (författare)
  • Uropathogenic Esherichia coli, multidrug-resistance and induction of host defense mechanisms
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infection (UTI), which is one of the most common infections in humans. UPEC strains have acquired successful strategies to subvert the host defense and antibiotics to persist in the urinary tract. The main aim of this thesis was to investigate the host defense mechanisms during a UPEC infection in vitro.The results showed that SOCS3, a key regulator of the immune system, was increased in bladder epithelial cells in response to a UPEC infection. In addition, UPEC decreased the phosphorylation of the SOCS3 regulated transcription factor STAT3. Nitric oxide (NO), a host-derived antimicrobial factor was shown to increase the release of IL-6 from renal epithelial cells alone or in combination with UPEC. The induction of IL-6 was mediated by ERK1/2 and p38 MAPK signaling and NO was also shown to attenuate UPEC-induced IL-6 mRNA degradation. Furthermore, extended-spectrum beta-lactamase (ESBL)-producing UPEC isolates were shown to induce higher PMN migration and ROS-production, but lower cytokine secretion from renal epithelial cells than susceptible isolates. Ineffective ceftibuten treatment of ESBL isolates induced bacterial filamentation associated with an increased release of ATP and LPS, with a subsequent enhancement of the ESBL evoked host response.Taken together, the findings show that UPEC can induce SOCS3, a suppressor of host responses and that NO can regulate proinflammatory mediators. In addition, the data suggest that there are differences between ESBL- and non-ESBL-producing isolates ability to evoke a host response. Exposing resistant isolates to ineffective antibiotics was shown to alter the evoked host response.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy