SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:0345 0082 ;srt2:(2010-2014);pers:(Jönsson Jan Ingvar Professor)"

Sökning: L4X0:0345 0082 > (2010-2014) > Jönsson Jan Ingvar Professor

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nordigården, Amanda (författare)
  • The FLT3 Tyrosine Kinase in Leukemia : Deciphering the Downstream Signaling Events and Drug-Escape Mechanisms
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Acute myeloid leukemia (AML) is a severe disease, which originates in blood-forming cells. Although major advances in understanding the biology of AML, the majority of patients eventually succumb to the disease. The tyrosine kinase receptor FLT3 has become an attractive therapeutic target AML for two major reasons; 1) It is one of the most frequently mutated genes in AML (about 30%). 2) Most of these mutations (FLT3-ITDs) correlate with an increased risk of relapse and poor overall survival. Small targeting inhibitors towards FLT3 have been designed and evaluated in clinical trials. However, the experiences from clinical trials are that drug resistance develops in a substantial number of patients. To overcome these resistance-associated problems it its important to improve the understanding of how FLT3 mutations function and how they respond to targeting drugs. This was addressed in this thesis by elucidating FLT3-ITD cell transformation mechanisms, identifying key downstream target molecules of mutated FLT3 and exploring the effect of various targeting inhibitors. The major finding of my thesis is that FLT3-targeting drugs elicit apoptosis through a FOXO3a-dependent upregulation of proapoptotic BH3-only protein Bim via inactivation of the PI3K/AKT signaling pathway. Furthermore, we have identified an interesting apoptotic mechanism, linked to increased ROS levels caused by expressing hyperactivated AKT in hematopoietic stem cells and bone marrow progenitor cells from FLT3-ITD transgenic mice. These findings are interesting from a therapeutic point of view. We have also shown that canertinib, an inhibitor of the ERBB receptor family, targets mutated FLT3 in vitro and in vivo. The irreversible binding mechanism of canertinib, as well as its multikinase activity, is attractive features. Overall, the results presented herein could provide basis for future directions in treatment of FLT3 mutant positive AML patients. Finally, we studied nine different FLT3-ITD mutations ranging in length from 6-33 amino acids. Data from this study suggest that different FLT3-ITDs may induce distinct degrees of transformation and that they respond differentially to FLT3-targeting drugs. These differences were not associated with size of the duplication but rather the mutational composition. In conclusion, this thesis explores the biologic features of FLT3 mutations and therapeutic targeting opportunities.
  •  
2.
  • Stjernberg (Zetterblad), Jenny (författare)
  • Knock Knock Knock, Who is there? - Cell Crosstalk within the Bone Marrow
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is focused on the subject of cell-cell interaction. Our body is composed of cells, most of them are integrated in a network with other cells that together forms tissues and organs. Every cell type in these complex organs has its special task and location. This is true whether we are doing research on humans or, as we have been, investigating mice. Mice are excellent models for studies of blood cell development since this process in mice resembles human blood cell generation in many regards.Cells communicate with each other by sending out small molecules or by directly binding to surrounding cells; to cells of the same kind as well as to cells with different origins and tasks. A cell is surrounded by hundreds of different signal-carrying entities; soluble, bound to the extra cellular matrix or bound to its surface. Every cell has to distinguish and respond to the environment according to its own specific nature.In the first article interleukin 7 (IL-7) a growth factor expressed by the stroma cells was studied. Results show that IL-7 is crucial for the immature progenitor cell in its development towards antibody producing B-lymphocytes. The second article is about stroma cells and their ability to support the development of B-cells. It is a comparative study on two different cell lines, where we focus on transcription factors and their regulation of protein induction of factors supporting B-cells. This study increased our knowledge of stroma cells. In the third paper we combined our knowledge from the first two papers in regard to stroma cells as well as B-cell development by testing if there is a possibility to theoretically find new factors of importance for the maturing B-cell. We achieved this by the development of GCINT, a database investigating possible receptorligand interactions between two cells, verifying these results in vitro with cell lines as well as primary cells. This revealed a two way communication between blood cells and stroma cells, highlighting the complexity of the bone marrow environment. In the last article we continued this work with primary FACS sorted stroma cells investing the potential connections between each of the stroma cell populations with primary blood cells in different stages of development. This work supports a model where hematopoietic cells can interact with stroma cells in a stage-specific manner and that the exchange between cells is of importance for their maturation.
  •  
3.
  • Trinks, Cecilia (författare)
  • Canertinib-induced leukemia cell death signaling : effects of a pan-ERBB inhibitor
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Acute myelogenous leukemia (AML) is the most common acute leukemia affecting adults, the second most frequent leukemia in children, and remains one of the most difficult to cure. Despite a substantial progress in understanding the pathogenesis of AML, general and rather unspecific cytostatic drugs such as cytarabine and anthracyclins still make up the cornerstones of therapy. Problems with these protocols include toxicity and the occurrence of resistance to the drugs in many patients. In order to extend the treatment options and ultimately improve survival for patients with leukemia it is imperative to increase the therapeutic arsenal with effective targeted therapies, preferentially with different mechanisms of action. AML due to a substantial heterogeneity between patients and within the clones in the same patient, as well as T-cell malignancies, are particularly difficult to treat since it is almost impossible to eradicate all leukemic stem cells using chemotherapy, thus there is a need to find more specific and effective treatments. Canertinib is a novel tyrosine kinase inhibitor developed for the treatment of certain solid cancers and has been designed to specifically inhibit all member of the ERBB-receptor family (ERBB1, ERBB2, ERBB3 and ERBB4). However, there are indications that canertinib has a broader specificity and it has not been tested on patients with leukemia.The aim of this thesis was to investigate the anti-proliferative and pro-apoptotic effects and mechanisms of canertinib in human leukemia cells, and more specifically to clarify the cell death pathway and potential targets for the drug in these cells.Canertinib treatment of leukemia cell lines resulted in an ERBB-independent induction of the intrinsic apoptotic pathway and activation of caspase-10, -9, and -8 as a consequence of Akt and Erk inhibition. In the human T-cell leukemia cell line Jurkat, the effects were associated to dephosphorylation of the lymphocyte-specific proteins, Lck and Zap-70. However, as full-length ERBB receptors were absent in leukemic cell lines other possible targets for canertinib were investigated. The FLT3 receptor, frequently mutated in AML, was discovered as a target since canertinib inhibited FLT3 autophosphorylation and kinase activity as well as downstream targets. The search for other possible proteins that might account for the effect exerted by canertinib, lead to the discovery of a truncated form of ERBB2 in human leukemic cells.In conclusion, canertinib display promising anti-tumor effects on malignant hematopoietic cells and might be used in future studies in combination with conventional chemotherapy or other targeted therapies in the treatment of leukemia.
  •  
4.
  • Ulvklo, Carina (författare)
  • Genetic mechanisms controlling cell specification and cell numbers in the Drosophila CNS
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A central theme in developmental neurobiology pertains to how the  diversity of different cell types is generated. In addition, it is equally important to understand how the specific numbers of each cell type is regulated. The developing Drosophila central nervous system (CNS) is a widely used system in which to study the genetic mechanisms underlying these events. Earlier studies have shown that a small number of progenitors produce the daunting number of cells that builds the mature CNS. This is accomplished by a series of events that in an increasingly restricted manner results in different combinatorial transcription factor codes that act to specify the different cell types in the CNS. However the factors controlling the progressive restriction in developmental potential and the ultimate fate of cells have not been completely elucidated.My PhD project has been focused on a specific stem cell in the embryonic Drosophila CNS, the neuroblast 5-6 (NB 5-6), and the lineage of neural cells that is produced by that stem cell. Earlier work have provided both a lot of knowledge and a multitude of genetic tools regarding this specific stem cell, which allowed us to address these issues at single cell resolution in an identifiable lineage. In particular, a late-born group of neurons expressing the apterous gene, the Apterous neurons, had been extensively studied in the past. One particular Apterous neuron, Ap4, expresses the neuropeptide gene FMRFamide (FMRFa), and the selective expression of this gene makes it a powerful marker for addressing many aspects of NB 5-6 development.To identify novel genes acting to control neuronal development, a large scale forward genetic screen was performed utilizing an FMRFa-GFP transgenic reporter construct, thereby using a marker that reports perturbations of NB 5-6-lineage development. Flies were treated with EMS, a chemical that induces random point mutations and the progeny where screened for aberrant FMRFa-GFP expression. From a total of ~ 10,000 mutated chromosomes ~600 mutants where isolated and further characterized. One group of mutants displayed additional Apterous neurons when compared to wild type, and a number of them represented new alleles of three previously known genes: neuralized (neur), kuzbanian (kuz), and seven up (svp). Neur and Kuz are parts of the Notch signaling pathway and Svp is the Drosophila COUP-TF1/2 ortholog; an orphan member of the steroid/thyroid receptor superfamily. These findings initiated two separate studies regarding the roles of these genes in the NB 5-6 lineage.Mutants in the Notch pathway i.e., neur and kuz displayed an excess number of Apterous neurons, born from NB 5-6. We initiated detailed studies regarding the origin of these ectopic neurons and could show that Notch signaling is critical for controlling a switch in proliferation mode in the latter part of the NB 5-6 lineage. With this new mechanism we could independently and simultaneously manipulate cell proliferation and temporal progression, and thereby predictable control cell fate and cell numbers born from the NB 5-6.The screen further identified additional mechanisms acting to specify the Ap cluster neurons. During NB 5-6 lineage development several temporal transitions acts to specify neurons born in different time windows. The temporal gene castor is expressed in a fairly large temporal window and the Ap neurons are sub-specified during that window by several combinatorial feed forward loops of transcription factors. In the screen, we identified a novel allele of the svp gene. We found that svp acts as a sub-temporal factor, fine-tuning the castor window into three different temporal parts. Previous studies have shown a role for svp earlier in the temporal cascade and we could confirm this in the NB 5-6 lineage. Together these data for the first time identify dual temporal roles of the same gene in a single NB lineage.In summary, my thesis has helped identify novel genetic mechanisms controlling neuron subtype specification and numbers.
  •  
5.
  • Åhsberg, Josefine (författare)
  • Molecular mechanisms in lymphoid restriction : securing the B lineage fate
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • With the work in this thesis I have aimed to deepen the understanding of the mechanisms behind the development of different blood cell lineages with a specific focus on B cell development.To understand the interplay between extracellular signaling and transcription factor networks in early lymphoid development we investigated the functional collaborations of FLT3 and IL7R. We found that signaling via FLT3 and IL7R act in powerful synergy on proliferation of common lymphoid progenitors (CLPs). In addition to a role in expansion of progenitor cells we provided evidence for that IL7R signaling play a crucial role in B-cell commitment. IL7 deficient mice display a dramatic block in development before functional lineage restriction in the Ly6D+ CLP-compartment. The few Ly6D+CLPs that do develop have reduced mRNA levels of transcription factor EBF1, a protein with crucial functions in lineage restriction and activation of the B-lymphoid program. One crucial function of EBF1 is to activate Pax5. Even though Pax5 deficient fetal liver cells upon transplantation to congenic hosts will generate an abundance of cells with an activated B-lineage transcriptional program, the pro-B cells have disrupted regulation of non-B-lineage transcripts and a propensity to develop into T- and NK-cells in vitro. Both the activation of the B-lineage program and lineage restriction was dependent on the dose of transcription factors. Mice carrying a heterozygous mutation for the transcription factor E2A had slightly reduced relative frequency of progenitor cells and an impaired B-lineage specification in CLPs. Loss of one allele of Ebf1 resulted in reduced surface expression of IL2Rα and pre-B cell receptor (BCR), reduced IL7-response in vitro, and disrupted cell cycle dynamics in pro- and pre-B cells. While heterozygous loss of Pax5 did not result in any dramatic phenotype,  the combined loss of one allele of Pax5 and one allele of Ebf1 (Pax5+/-Ebf1+/-) had a dramatic effect on lineage plasticity in B-cell progenitors compared to the single heterozygotes. Furthermore, these Pax5+/-Ebf1+/- mice developed spontaneous, transplantable pro-B cell tumors and had a significantly reduced probability to survive over time. The transformed cells show high in vitro plasticity and tumor cells with induced overexpression of intracellular Notch1 can transform into T-lineage cell in vivo.The data presented in this thesis add important pieces of information to the field of developmental hematopoiesis. By increasing the analytical depth of development in normal circumstances, and by understanding the consequence of genetic mutations in relation to cell type, we hope to contribute to the understanding of hematopoietic development in health and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy