SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:0345 0082 srt2:(2015-2019);pers:(Carlsson Marcus Docent)"

Sökning: L4X0:0345 0082 > (2015-2019) > Carlsson Marcus Docent

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlander, Britt-Marie, 1954- (författare)
  • Magnetic Resonance Imaging of the Heart : Image quality, measurement accuracy and patient experience
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Non-invasive diagnostic imaging of atherosclerotic coronary artery disease (CAD) is frequently carried out with cardiovascular magnetic resonance imaging (CMR) or myocardial perfusion single photon emission computed tomography (MPS). CMR is the gold standard for the evaluation of scar after myocardial infarction and MPS the clinical gold standard for ischemia. Magnetic Resonance Imaging (MRI) is at times difficult for patients and may induce anxiety while patient experience of MPS is largely unknown.Aims: To evaluate image quality in CMR with respect to the sequences employed, the influence of atrial fibrillation, myocardial perfusion and the impact of patient information. Further, to study patient experience in relation to MRI with the goal of improving the care of these patients.Method: Four study designs have been used. In paper I, experimental cross-over, paper (II) experimental controlled clinical trial, paper (III) psychometric crosssectional study and paper (IV) prospective intervention study. A total of 475 patients ≥ 18 years with primarily cardiac problems (I-IV) except for those referred for MRI of the spine (III) were included in the four studies.Result: In patients (n=20) with atrial fibrillation, a single shot steady state free precession (SS-SSFP) sequence showed significantly better image quality than the standard segmented inversion recovery fast gradient echo (IR-FGRE) sequence (I). In first-pass perfusion imaging the gradient echo-echo planar imaging sequence (GREEPI) (n=30) had lower signal-to-noise and contrast–to-noise ratios than the steady state free precession sequence (SSFP) (n=30) but displayed a higher correlation with the MPS results, evaluated both qualitatively and quantitatively (II). The MRIAnxiety Questionnaire (MRI-AQ) was validated on patients, referred for MRI of either the spine (n=193) or the heart (n=54). The final instrument had 15 items divided in two factors regarding Anxiety and Relaxation. The instrument was found to have satisfactory psychometric properties (III). Patients who prior CMR viewed an information video scored significantly (lower) better in the factor Relaxation, than those who received standard information. Patients who underwent MPS scored lower on both factors, Anxiety and Relaxation. The extra video information had no effect on CMR image quality (IV).Conclusion: Single shot imaging in atrial fibrillation produced images with less artefact than a segmented sequence. In first-pass perfusion imaging, the sequence GRE-EPI was superior to SSFP. A questionnaire depicting anxiety during MRI showed that video information prior to imaging helped patients relax but did not result in an improvement in image quality.
  •  
2.
  • Trzebiatowska-Krzynska, Aleksandra, 1964- (författare)
  • The right ventricle in volume or pressure overload : Insights from novel imaging techniques
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This study is inspired by the gap in knowledge regarding the timing of cardiac surgery and interventions in adult patients with congenital heart disease. There are many parameters used assessing right ventricular function; however, most of them have pitfalls. Understanding the pathomechanisms by which the heart adapts to congenital defects is probably key to find the answer when it is time to intervene and start discussing treatment options. Heart defects are the most frequently occurring congenital disorders. Less than 50% of individuals with moderate to severe congenital heart defects, e.g. transposition of the great arteries (TGA) or tetralogy of Fallot (TOF), survive to adulthood without intervention. Advances in cardiac surgery and better identification of individuals at risk for sudden cardiac death have increased survival rates. Currently, more than 96% of patients with congenital heart disease survive to at least 16 years of age; most undergo corrective surgery but are not cured, and only a few have normal physiology and anatomy. In many cases, the heart must develop mechanisms of adaptation to the changed conditions after surgery. Consequently, correction of the defect creates residual disease with a risk of future complications.To prevent clinical deterioration and to identify the development of complications, patients need lifelong, regular follow up. The choice of followup modalities depends on the cardiac malformation.The right ventricle (RV) plays an important role, as it is often part of the defect or is influenced by the surgery. In the past, research was focused on assessment of left ventricular function (LV), and the RV was “the forgotten ventricle.” Observations and studies in the last few decades brought increased interest into the RV and revealed the importance of the RV in the prognosis of various cardiac diseases.An understanding of RV morphology, pathophysiology and adaptive mechanisms is crucial for further studies of prognosis as well as for research linked to the use of particular diagnostic modalities.When the RV is exposed to increased pressure load, e.g. in atrially corrected transposition of the great arteries (TGA), adaptation affects the cavity volume as well as the wall thickness. When the RV is volume overloaded, adaptation involves enhancement of the RV cavity volume while the wall thickness often remains unchanged under long time. RV ejection fraction (RVEF) gives some information about changes in RV function, but information on myocardial contractility and contractile reserve is also needed. New functional parameters such as strain—also known as myocardial deformation—provide some information about intrinsic myocardial function.In Paper I, we studied functional parameters such as ejection fraction and strain (radial and longitudinal strain for both ventricles) in patients with Tetralogy of Fallot (TOF) and TGA. Longitudinal RV strain was depressed in both patient groups in comparison with that in healthy individuals, and there were additional differences between the two patient groups.In Paper II, we validated three-dimensional echocardiography (3DEcho) against the cardiac magnetic resonance (CMR) gold standard. The study population was limited to patients with TOF. In general, 3DEcho underestimated RV volumes but was able to identify patients with RV dilatation on CMR with high sensitivity. RV longitudinal free wall strain measured by CMR with a cut-off set at -14% identified patients with depressed exercise capacity and low peak oxygen uptake.In Paper III, we studied a new CMR method to quantify and visualise turbulent flow in the heart and vessels. Turbulent flow can be harmful to tissue, blood cells, and endothelium and can contribute to tissue remodeling. In patients with TOF, turbulent flow can be seen as variance in 2DEcho color Doppler. In CMR, increased turbulent kinetic energy (TKE) could be seen with four-dimensional flow. The RV TKE was increased in patients with TOF with pulmonary regurgitation compared with that in healthy controls.In Paper IV, we validated “knowledge-based reconstruction” (KBR), a novel method to calculate RV volume, against CMR in patients with various types of congenital heart defects. Two-dimensional echocardiogram-based threedimensional RV reconstruction is a relatively uncomplicated method that creates a three-dimensional RV model based on a limited number of predefined points of interest (RV structures such as tricuspid annulus, RV free wall, or pulmonary valve).KBR showed good agreement with CMR (intraclass correlation coefficient = 0.84 for RV end-diastolic volume and 0.89 for ejection fraction) but tended to underestimate RV volumes, which is in line with other methods based on ultrasound.Conclusions: 3DEcho is an evolving modality that is able to identify patients with RV dilatation. It can be used clinically for the follow up of patients with congenital heart diseases, especially those with mildly to moderately dilated RVs. When an intervention seems likely, 3DEcho results should be verified by CMR. CMR-derived measurements of longitudinal and radial strain provide a new understanding of RV remodeling and ventricular interdependence in patients with TOF and TGA. Depressed longitudinal strain may indicate a risk of depressed exercise capacity and, in patients with TGA, clinical deterioration.Further studies in larger populations of patients with congenital heart defects are needed, as the altered RV morphology in such patients makes quantitative assessment especially challenging.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy