SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:0345 7524 ;pers:(Abrikosov Igor Professor)"

Sökning: L4X0:0345 7524 > Abrikosov Igor Professor

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alling, Björn, 1980- (författare)
  • Configurational and Magnetic Interactions in Multicomponent Systems
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is a theoretical study of configurational and magnetic interactions in multicomponent solids. These interactions are the projections onto the configurational and magnetic degrees of freedom of the underlying electronic quantum mechanical system, and can be used to model, explain and predict the properties of materials. For example, the interactions govern temperature induced configurational and magnetic order-disorder transitions in Heusler alloys and ternary nitrides.In particular three perspectives are studied. The first is how the interactions can be derived from first-principles calculations at relevant physical conditions. The second is their consequences, like the critical temperatures for disordering, obtained with e.g. Monte Carlo simulations. The third is their origin in terms of the underlying electronic structure of the materials.Intrinsic defects in the half-Heusler system NiMnSb are studied and it is found that low-energy defects do not destroy the important half-metallic property at low concentrations. Deliberate doping of NiMnSb with 3d-metals is considered and it is found that replacing some Ni with extra Mn or Cr creates new strong magnetic interactions which could be beneficial for applications at elevated temperature. A self-consistent scheme to include the effects of thermal expansion and one-electron excitations in the calculation of the magnetic critical temperature is introduced and applied to a study of Ni1−xCuxMnSb.A supercell implementation of the disordered local moments approach is suggested and benchmarked for the treatment of paramagnetic CrN as a disordered magnetic phase. It is found that the orthorhombic-to-cubic phase transition in this nitride can be understood as a first-order magnetic order-disorder transition. The ferromagnetism in Ti1−xCrxN solid solutions, an unusual property in nitrides, is explained in terms of a charge transfer induced change in the Cr-Cr magnetic interactions.Cubic Ti1−xAlxN solid solutions displays a complex and concentration dependent phase separation tendency. A unified cluster expansion method is presented that can be used to simulate the configurational thermodynamics of this system. It is shown that short range clustering do influence the free energy of mixing but only slightly change the isostructural phase diagram as compared to mean-field estimates.
  •  
2.
  • Asker, Christian, 1979- (författare)
  • Effects of disorder in metallic systems from First-Principles calculations
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, quantum-mechanical calculations within density-functional theory on metallic systems are presented. The overarching goal has been to investigate effects of disorder. In particular, one of the properties investigated is the bindingenergy shifts for core electrons in binary alloys using different theoretical methods. These methods are compared with each other and with experimental results. One such method, the so-called Slater-Janak transition state method relies on the assumption that the single-particle eigenvalues within density-functional theory are linear functions of their respective occupation number. This assumption is investigated and it is found that while the eigenvalues to a first approximation show linear behavior, there are also nonlinearities which can influence the core-level binding energy shifts.Another area of investigation has been iron based alloys at pressures corresponding to those in the Earth’s inner core. This has been done for the hexagonal close packed and face entered cubic structures. The effects of alloying iron with magnesium and nickel on the equation of state as well on the elastic properties have been investigated. The calculations have shown that the hexagonal close packed structure in FeNi is more isotropic than the face-centered cubic structure, and that adding Mg to Fe has a large impact on the elastic properties.Finally, the effects of disorder due to thermal motion of the atoms have been investigated through ab-initio molecular dynamics simulations. Within the limits of this method and the setup, it is found that the face-centered cubic structure of molybdenum can be dynamically stabilized at high temperature, leading to a metastable structure, on the average. The dynamical stabilization of face-centered cubic molybdenum also rendered it possible to accurately calculate the lattice stability relative to the body-centered cubic phase. Inclusion of temperature effects for the lattice stability using ab-initio molecular dynamics simulations resolves the disagreement between ab-initio calculations and thermochemical methods.
  •  
3.
  • Bock, Florian, 1994- (författare)
  • Combining ab‐initio and machine learning techniques for theoretical simulations of hard nitrides at extreme conditions
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis I focus on combining the high accuracy of first-principles calculations with modern machine learning methods to make large scale investigations of industrially relevant nitride systems reliable and computationally viable. I study the electronic, thermodynamic and mechanical properties of two families of compounds: Ti1−xAlxN alloys at the operational conditions of industrial cutting tools and ReNx systems at crushing pres-sures comparable to inner earth core conditions. Standard first-principles simulations of materials are usually carried out at zero temperature and pressure, and while many state-of-the-art approaches can take these effects into account, they are usually accompanied by a substantial increase in computational demand. In this thesis I therefore explore the possiblities of studying materials at extreme conditions using machine learning methods with extraordinary efficiency without loss of calculational accuracy. Ti1−xAlxN alloy coatings exhibit exceptional properties due to their inherent ability to spinodally decompose at elevated temperature, leading to age-hardening. Since the cubic B1 phase of Ti1−xAlxN is well-studied, available high-accuracy first-principles data served as both a benchmark and data set on which to train a machine learning interatomic potential. Using the reliable moment tensor potentials, an investigation of the accuracy and efficiency of this approach was carried out in a machine learning study. Building upon the success of this technique, implementation of a learning-on-the-fly (active learning) methodology into a workflow to determine accurate material properties with minimal prior knowledge showed great promise, while maintaining a computational demand up to two orders of magnitude lower than comparable first-principles approaches. Investigations of properties of industrially lesser desired, but sometimes present hexagonal alloy phases of Ti1−xAlxN are also included in this thesis, since knowledge and understanding of all competing phases can help guide development toward improving cutting tool lifetime and performance. Furthermore, while w-Ti1−xAlxN may not be able to compete with its cubic counterpart in terms of hardness, it shows promise for other applications due to its electronic and elastic properties. Metastable ReNx phases are high energy materials due to their covalent N-N and Re-N bonds, leading to exceptional mechanical and electronic properties. Just like diamond, the hardest and arguably most famous metastable mate-rial naturally occurring on earth, they are stabilized by extreme pressures and high temperatures, but can be quenched to ambient conditions. Understanding the formation and existence of these non-equilibrium compounds may hold the key to unlocking a new generation of hard materials. In this thesis, all currently known phases of ReNx compounds have been investigated, encompassing both experimentally observed and theoretically suggested structures. Investigations of the convex hulls across a broad pressure range were carried out, coupled with calculations of phonons in the proposed crystals to determine both energetic and dynamical stability. Overall, the studies included in this thesis focused mainly on investigation of the ground state of ReN2 at higher pressure, where experimental results were deviating from earlier theoretical predictions. Additional research focused on specifically exploring properties and stability of novel ReN6 at synthesis conditions using the active learning workflow to train an interatomic potential. 
  •  
4.
  • Ekholm, Marcus (författare)
  • Theoretical Descriptions of Complex Magnetism in Transition Metals and Their Alloys
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, various methods for studying solids by simulations of quantummechanical equations, have been applied to transition metals and their alloys. Transition metals such as Fe, Ni, and Mn, are not only cornerstones in modern technology, but also key components in the very fabric of the Earth interior. Such systems show highly complex magnetic properties. As shown within this thesis, to understand and predict their properties from a microscopic level, is still a highly demanding task for the the quantum theory of solids. This is especially crucial at elevated temperature and pressure.It is found that the magnetic degrees of freedom are inseparable from the structural, elastic and chemical properties of such alloy systems. This requires theoretical descriptions capable of handling this interplay. Such schemes are discussed and demonstrated.Furthermore, the importance of the description of Coulomb correlation effects is demonstrated by DFT calculations and also by going beyond the one-electron description by the LDA+DMFT method.It is also shown how magnetic interactions in the half-metallic compound NiMnSb can be manipulated by alloying. The stability of these alloys is  also evaluated in calculations, and verified by experimental synthesis at ambient conditions.
  •  
5.
  • Hellman, Olle, 1981- (författare)
  • Thermal properties of materials from first principles
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the search of clean and efficient energy sources intermediate temperature solid oxide fuel cells are among the prime candidates. What sets the limit of their efficiency is the solid electrolyte. A promising material for the electrolyte is ceria. This thesis aims to improve the characteristics of these electrolytes and help provide thorough physical understanding of the processes involved. This is realised using first principles calculations.The class of methods based on density functional theory generally ignores temperature effects. To accurately describe the intermediate temperature characteristics I have made adjustments to existing frameworks and developed a qualitatively new method. The new technique, the high temperature effective potential method, is a general theory. The validity is proven on a number of model systems.Other subprojects include low-dimensional segregation effects, adjustments to defect concentration formalism and optimisations of ionic conductivity.
  •  
6.
  • Jönsson, Johan, 1989- (författare)
  • Electronic transitions and correlation effects : From pure elements to complex materials
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Macroscopic properties of real materials, such as conductivity, magneticproperties, crystal structure parameters, etc. are closely related or evendetermined by the configuration of their electrons, characterized by electronicstructure. By changing the conditions, e.g, pressure, temperature, magnetic/electric field, chemical doping, etc. one can modify the electronic structure ofsolids and therefore induce a phase transition(s) between different electronic andmagnetic states. One famous example is a Mott metal-to-insulator phase transition,at which a material undergoes a significant, often many orders of magnitude, changeof conductivity caused by the interplay between itineracy and localization of thecarriers.Electronic topological transitions (ETT) involvechanges in the topology of a metal's Fermi surface. This thesis investigates theeffect of such electronic transitions in various materials, ranging from pureelements to complex compounds.To describe the interplay between electronic transitionsand properties of real materials,different state-of-the-art computational methods are used. The densityfunctional theory(DFT), as well as the DFT + U method, is used to calculatestructural properties. The validity of recently introduced exchange-correlationfunctionals, such as the strongly constrained and appropriately normed (SCAN)functional, is also assessed for magnetic elements. In order toinclude dynamical effects of electron interactions we use the DFT + dynamical meanfield theory (DFT + DMFT) method.Experiments in hcp-Os have reported peculiarities in the ratio betweenlattice parameters at high pressure. Previous calculations have suggested these transitions maybe related to ETTs and even crossings of core levels at ultra high pressure. Inthis thesis it is shownthat the crossing of core levels is a general feature of heavy transitionmetals. Experiments have therefore been performed to look for indications ofthis transition in Ir using X-ray absorption spectroscopy. In NiO, strongrepulsion between electrons leads to a Mott insulating state at ambientconditions. It has long been predicted that high pressure will lead to aninsulator-to-metal transition. This has been suggested to be accompanied by aloss of magnetic order, and a structural phase transition. In collaboration withexperimentalists we look for thistransition by investigating the X-ray absorption spectra as well as themagnetic hyperfine field. We find no evidence of a Mott transition up to 280GPa. In the Mott insulator TiPO4, application of external pressure has beensuggested to lead to a spin-Peierls transition at room temperature. Weinvestigate the dimerisation and the magnetic structure of TiPO4 at high pressure.As pressure is increased further, TiPO4 goes through a metal to insulatortransition before an eventual crystallographic phase transition. Remarkably, thenew high pressure phases are found to be insulators; the Mott insulating stateis restored.MAX phases are layered materials that combinemetallic and ceramic properties and feature layers of M-metal and X-C or N atomsinterconnected by A-group atoms. Magnetic MAX-phases with their low dimensionalmagnetism are promising candidates for applications in e.g., spintronics.The validity of various theoretical approaches are discussed in connection tothe magnetic MAX-phase Mn2GaC. Using DFT and DFT + DMFT we consider the hightemperature paramagnetic state, and whether the magnetic moments are formed bylocalized or itinerant electrons.
  •  
7.
  • Lind, Hans (författare)
  • Theoretical understanding of stability of alloys for hard-coating applications and design
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The performance of modern hard coating materials puts high demands on properties such as hardness, thermal stability and oxidation resistance. These properties not only depend on the chemical composition, but also on the structure of the material on a nanoscale. This kind of nanostructuring will change during use and can be both beneficial and detrimental as materials grown under non-equilibrium conditions transforms under heat treatment or pressure into other structures with significantly different properties. This thesis aims to reveal the physics behind the processes of phase stability and transformations and how this can be utilized to improve on the properties of this class of alloys. This has been achieved through the application of various methods of first-principles calculations and analysis of the results on the basis of thermodynamics and electronic structure theory.Within multicomponent transition metal aluminum nitride alloys (TMAlN) a number of studies have been carried out and presented here on ways of improving high temperature stability and hardness. Most (TMAl)N and TMN prefer a cubic B1 structure while AlN is stable in a hexagonal B4 phase, but for the purposes of hard coatings the metastable cubic B1 AlN phase, isostructural with the TMN phase is desired. It will be shown how the introduction of additional alloying components, such as Cr, into (TiAl)N changes the thermodynamic stability of phases so that new intermediary and metastable phases are formed during decomposition. In the case of such a (CrAl)N phase it is shown to have greater thermodynamic stability in the cubic phase than the pure AlN, resulting in improved high temperature hardness. Also, the importance of treating not just the binodal decomposition through the formation energy relative to end products but also the impact of spinodal decomposition from its second derivative due to the topology of formation energy surfaces is emphasized in the thesis. The impact of pressure on the AlN phase has also been studied through the calculation of a P-T diagram of AlN as part of a (TiAl)N alloy.During the study of chemical alloying of TM components into AlN the alloying of low concentrations of these TM were treated in great detail. What is generally referred to as the AlN phase in decomposition is not entirely pure and can be expected to contain traces of any alloying components, such as Ti and Cr or whatever other metals may be present. Low concentration alloying of Cr, on the order of 5-10% is also shown to be stable with regard to isostructural decomposition. Detailed analysis of the effect of Ti and Cr impurities in AlN has been carried out along with a systematic search of AlN alloyed with small amounts of other TM components. The impact of these impurities on the electronic structure and thermodynamic properties is analyzed and the general trends will be explained through the occupation of impurity states by d-like electrons.Theoretical treatment of such impurities is not straightforward however. AlN is an s-p semiconductor with a wide band gap while TM impurities generate states of a d-like nature situated inside the band gap. Such localized impurity states are expected to give rise to magnetic effects due to spin dependent exchange, in addition strong correlation effects might have to be taken into account. For that reason the use of hybrid functionals with orbital corrections according to the mHSE+Vw scheme, developed specifically for this class of materials, has been used and shown to influence the results during calculation of impurities of Ti and Cr.In nanocomposite multilayered structures, composed of very thin layers of one material sandwiched between slabs of another, such as layers of SiN between TiN or ZrN, the material properties are greatly affected by the interfaces. In addition to the thermodynamic effects and lattice strains of the interfaces one also has to consider the atomic vibrational motion in the interface structure. Hence, dynamical stability of these thin multilayers is of great importance. As part of this thesis, results on the thermodynamic and dynamical stability of both TiN-SiN layers and ZrN-SiN will be presented. It will be shown that due to considerable dynamical instability in the interface structure of monolayered B1 SiN sandwiched between isostructural layers of B1 ZrN along (111) interfaces this structure cannot be expected to grow, instead preferring the stable (001) direction of growth.
  •  
8.
  • Lindmaa, Alexander (författare)
  • Theoretical prediction of properties of atomistic systems : Density functional theory and machine learning
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The prediction of ground state properties of atomistic systems is of vital importance in technological advances as well as in the physical sciences. Fundamentally, these predictions are based on a quantum-mechanical description of many-electron systems. One of the hitherto most prominent theories for the treatment of such systems is density functional theory (DFT). The main reason for its success is due to its balance of acceptable accuracy with computational efficiency. By now, DFT is applied routinely to compute the properties of atomic, molecular, and solid state systems.The general approach to solve the DFT equations is to use a density-functional approximation (DFA). In Kohn-Sham (KS) DFT, DFAs are applied to the unknown exchangecorrelation (xc) energy. In orbital-free DFT on the other hand, where the total energy is minimized directly with respect to the electron density, a DFA applied to the noninteracting kinetic energy is also required. Unfortunately, central DFAs in DFT fail to qualitatively capture many important aspects of electronic systems. Two prime examples are the description of localized electrons, and the description of systems where electronic edges are present.In this thesis, I use a model system approach to construct a DFA for the electron localization function (ELF). The very same approach is also taken to study the non-interacting kinetic energy density (KED) in the slowly varying limit of inhomogeneous electron densities, where the effect of electronic edges are effectively included. Apart from the work on model systems, extensions of an exchange energy functional with an improved KS orbital description are presented: a scheme for improving its description of energetics of solids, and a comparison of its description of an essential exact exchange feature known as the derivative discontinuity with numerical data for exact exchange.An emerging alternative route towards the prediction of the properties of atomistic systems is machine learning (ML). I present a number of ML methods for the prediction of solid formation energies, with an accuracy that is on par with KS DFT calculations, and with orders-of-magnitude lower computational cost.
  •  
9.
  • Liot, François (författare)
  • Thermal Expansion and Local Environment Effects in Ferromagnetic Iron-Based Alloys : A Theoretical Study
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Nobel Prize for Physics 1920 was awarded to C.-E. Guillaume for his discovery of properties of nickel steels. He had previously observed that certain iron-nickel alloys exhibit the Invar effect i.e. an extremely low thermal expansion coefficient over a wide range of temperature. The decades since then have seen the observation of similar phenomena in other iron-based materials such as iron-platinum and iron-palladium. Moreover, there has been a great deal of theoretical work on the mechanism behind the Invar anomaly in the above-mentioned systems. However, despite many years of intensive research, a widely accepted microscopic theory of the effects is still lacking.The present thesis aims at providing an insight into the physical nature of the thermal expansion of ferromagnetic random face-centered cubic iron-nickel, ironplatinum and iron-palladium bulk solids.First, the thermal expansion coefficient is modeled as a function of temperature. The theory relies on the disordered local moment (DLM) formalism. However, contrary to all the previous models, the mapping between equilibrium states and partially disordered local moment (PDLM) states involves the probability that an iron-iron nearest-neighbour pair shows anti-parallel local magnetic moments, and the average lattice constant of the system at a finite temperature is calculated by minimization of an energy. The approach is applied to iron-nickel alloys. The model qualitatively reproduces several experimentally observed properties of disordered fcc iron-nickel solids. This includes Guillaume’s famous plot of the thermal expansion coefficient at room temperature as a function of concentration.Second, for the purpose of studying the origin of the anomalous expansion, the anomalous and normal contributions to the thermal expansion coefficient are defined, then evaluated for iron-nickel alloys. The results support the idea that the peculiar behaviour of the expansivity, , originates solely from the anomalous contribution,αa.Subsequently, the anomalous contribution is modeled for iron-nickel systems. In formulating the model, the following observation is taken into account; the average lattice spacing of an Fe100−xNix alloy at temperature T in a partially disordered local moment state is strongly negatively correlated with the probability that a nearest-neighbour pair has each of its two sites occupied by an iron atom and exhibits anti-ferromagnetically aligned magnetic moments (XFFAP). The quantity αa(x, T ) is estimated for several couples of values of the parameters x and T . Model results are found to agree qualitatively and quantitatively well with data obtained from the definition of αa. Thus, the model can successfully explain the basic process leading to the anomalous thermal expansion. It is consistent with the theory that the coefficient αa is controlled by the temperature derivative of XFFAP. Finally, the anomalous contribution to the thermal expansion coefficient of Fe72Pt28 and Fe66Pd34 solids is modeled as that of Fe65Ni35. A good agreement between the model results and experimental data for the expansivity as a function of temperature is noted. In conclusion, the Invar effects in disordered fcc iron-nickel, iron-platinum and iron-palladium alloys may have a common origin.
  •  
10.
  • Marten, Tobias, 1979- (författare)
  • Theoretical Considerations of Local Environment Effects in Alloys
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is devoted to a theoretical study of local environment effects in alloys. A fundamental property of a disordered system is that all chemically equivalent atoms are different due to their different chemical environments, in contrast to an ideal periodic solid where all the atoms that occupy equivalent positions in the crystal have exactly the same physical properties. The local environment effects have been largely ignored in earlier theories of disordered systems, that is the system has been treated as a whole and average properties have been derived. Moreover, inhomogeneous systems, such as surfaces and interfaces, induce local environment effects that are not necessarily present in the bulk.The importance and presence of local environment effects are illustrated by calculating observable physical properties in various systems. In particular, by employing the complete screening picture the effects of local environments on the core-level binding energy shifts as well as Auger shifts in random alloys are in- vestigated. This so-called disorder broadening effect has recently been observed experimentally. It is shown that there are different contributions to the disorder broadening that vary with the local chemical environment. Furthermore, the influ- ence of inhomogeneous lattice distortions on the disorder broadening of the core- level photoemission spectra are considered for systems with large size-mismatch between the alloy components.The effects of local chemical environments on physical properties in magnetic systems are illuminated. A noticeable variation in the electronic structure, local magnetic moments and exchange parameters at different sites is obtained. This reflects the sensitivity to different chemical environments and it is shown to be of qualitative importance in the vicinity of magnetic instability.The local environment effects due to the presence of surfaces and interfaces are also considered. The effect is explicitly studied by considering the concentration profile of a thin Ag-Pd film deposited on a Ru substrate. Two computational approaches are utilized to calculate the relative composition in each layer of the thin film as a function of temperature in a theoretically consistent way. It is shown that, opposed to the situation in the bulk, where a complete solubility between Ag and Pd takes place, a non-uniform distribution of the alloy components across the film is observed.In another study it is investigated whether the presence of TiN interfaces changes the dynamical and thermodynamic stability of B1 SiN. Phonon calcula- tions show that TiN interfaces have a stabilization effect on the lattice dynamics. On the other hand, calculations of the Si vacancy formation energy show that the structures are unstable with respect to composition variations. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
doktorsavhandling (18)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (18)
Författare/redaktör
Abrikosov, Igor, Pro ... (3)
Abrikosov, Igor A., ... (2)
Abrikosov, Igor A., ... (2)
Tasnadi, Ferenc, Sen ... (2)
Simak, Sergey, Dr. (2)
visa fler...
Lind, Hans (1)
Mücklich, Frank (1)
Asker, Christian, 19 ... (1)
Liot, Francois (1)
Alling, Björn, 1980- (1)
Marten, Tobias, 1979 ... (1)
Ekholm, Marcus (1)
Mosyagin, Igor (1)
Hultman, Lars, Profe ... (1)
Blügel, Stefan, Prof ... (1)
Neugebauer, Jörg, Pr ... (1)
Odén, Magnus, Profes ... (1)
Odén, Magnus, Profes ... (1)
Mücklich, Frank, Pro ... (1)
Mohn, Peter, Profess ... (1)
Bock, Florian, 1994- (1)
Friák, Martin, Dr. (1)
Tidholm, Johan, 1991 ... (1)
Hellman, Olle, 1981- (1)
Steneteg, Peter, 198 ... (1)
Simak, Sergey, Profe ... (1)
Shulumba, Nina, 1988 ... (1)
Jönsson, Johan, 1989 ... (1)
Pourovskii, Leonid, ... (1)
Wills, John M., Prof ... (1)
Simak, Sergei, Profe ... (1)
Lindmaa, Alexander (1)
Ekholm, Marcus, Seni ... (1)
Dudarev, Sergei, Pro ... (1)
Stafström, Sven, Pro ... (1)
Björkman, Torbjörn, ... (1)
Vekilova, Olga (1)
Nieminen, Risto, Pro ... (1)
Tasnádi, Ferenc, Dr. (1)
Drautz, Ralf, Profes ... (1)
Armiento, Rickard, D ... (1)
Kudrnovský, Josef, P ... (1)
Postnikov, Andrei, P ... (1)
Mozafari, Elham, 198 ... (1)
Stocks, George Malco ... (1)
Harmon, Bruce, Profe ... (1)
Calandra, Matteo, Pr ... (1)
Skripnyak, Natalia, ... (1)
Yakimenko, Iryna, Pr ... (1)
visa färre...
Lärosäte
Linköpings universitet (18)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy