SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:0345 7524 ;pers:(Alvandpour Atila Professor)"

Sökning: L4X0:0345 7524 > Alvandpour Atila Professor

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhide, Ameya, 1980- (författare)
  • Design of High-Speed Time-Interleaved Delta-Sigma D/A Converters
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Digital-to-analog (D/A) converters (or DACs) are one the fundamental building blocks of wireless transmitters. In order to support the increasing demand for highdata-ate communication, a large bandwidth is required from the DAC. With the advances in CMOS scaling, there is an increasing trend of moving a large part of the transceiver functionality to the digital domain in order to reduce the analog complexity and allow easy reconguration for multiple radio standards. ΔΣ DACs can t very well into this trend of digital architectures as they contain a large digital signal processing component and oer two advantages over the traditionally used Nyquist DACs. Firstly, the number of DAC unit current cells is reduced which relaxes their matching and output impedance requirements and secondly, the reconstruction lter order is reduced.Achieving a large bandwidth from ΔΣ DACs requires a very high operating frequency of many-GHz from the digital blocks due to the oversampling involved. This can be very challenging to achieve using conventional ΔΣ DAC architectures, even in nanometer CMOS processes. Time-interleaved ΔΣ (TIDSM) DACs have the potential of improving the bandwidth and sampling rate by relaxing the speed of the individual channels. However, they have received only some attention over the past decade and very few previous works been reported on this topic. Hence, the aim of this dissertation is to investigate architectural and circuit techniques that can further enhance the bandwidth and sampling rate of TIDSM DACs.The rst work is an 8-GS/s interleaved ΔΣ DAC prototype IC with 200-MHz bandwidth implemented in 65-nm CMOS. The high sampling rate is achieved by a two-channel interleaved MASH 1-1 digital ΔΣ modulator with 3-bit output, resulting in a highly digital DAC with only seven current cells. Two-channel interleaving allows the use of a single clock for both the logic and the nal multiplexing. This requires each channel to operate at half the sampling rate i.e. 4 GHz. This is enabled by a high-speed pipelined MASH structure with robust static logic. Measurement results from the prototype show that the DAC achieves 200-MHz bandwidth, –57-dBc IM3 and 26-dB SNDR, with a power consumption of 68-mW at 1-V digital and 1.2-V analog supplies. This architecture shows good potential for use in the transmitter baseband. While a good linearity is obtained from this DAC, the SNDR is found to be limited by the testing setup for sending high-speed digital data into the prototype.The performance of a two-channel interleaved ΔΣ DAC is found to be very sensitive to the duty-cycle of the half-rate clock. The second work analyzes this eect mathematically and presents a new closed-form expression for the SNDR loss of two-channel DACs due to the duty cycle error (DCE) for a noise transfer function (NTF) of (1 — z—1)n. It is shown that a low-order FIR lter after the modulator helps to mitigate this problem. A closed-form expression for the SNDR loss in the presence of this lter is also developed. These expressions are useful for choosing a suitable modulator and lter order for an interleaved ΔΣ DAC in the early stage of the design process. A comparison between the FIR lter and compensation techniques for DCE mitigation is also presented.The nal work is a 11 GS/s 1.1 GHz bandwidth time-interleaved DAC prototype IC in 65-nm CMOS for the 60-GHz radio baseband. The high sampling rate is again achieved by using a two-channel interleaved MASH 1-1 architecture with a 4-bit output i.e only fteen analog current cells. The single clock architecture for the logic and the multiplexing requires each channel to operate at 5.5 GHz. To enable this, a new look-ahead technique is proposed that decouples the two channels within the modulator feedback path thereby improving the speed as compared to conventional loop-unrolling. Full speed DAC testing is enabled by an on-chip 1 Kb memory whose read path also operates at 5.5 GHz. Measurement results from the prototype show that the ΔΣ DAC achieves >53 dB SFDR, < —49 dBc IM3 and 39 dB SNDR within a 1.1 GHz bandwidth while consuming 117 mW from 1 V digital/1.2 V analog supplies. The proposed ΔΣ DAC can satisfy the spectral mask of the 60-GHz radio IEEE 802.11ad WiGig standard with a second order reconstruction lter.
  •  
2.
  • Chen, Kairang, 1986- (författare)
  • Energy-Efficient Data Converters for Low-Power Sensors
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Wireless sensor networks (WSNs) are employed in many applications, such as for monitoring bio-potential signals and environmental information. These applications require high-resolution (> 12-bit) analog-to-digital converters (ADCs) at low-sampling rates (several kS/s). Such sensor nodes are usually powered by batteries or energy-harvesting sources hence low power consumption is primary for such ADCs. Normally, tens or hundreds of autonomously powered sensor nodes are utilized to capture and transmit data to the central processor. Hence it is profitable to fabricate the relevant electronics, such as the ADCs, in a low-cost standard complementary metal-oxide-semiconductor (CMOS) process. The two-stage pipelined successive approximation register (SAR) ADC has shown to be an energy-efficient architecture for high resolution. This thesis further studies and explores the design limitations of the pipelined SAR ADC for high-resolution and low-speed applications.The first work is a 15-bit, 1 kS/s two-stage pipelined SAR ADC that has been implemented in 0.35-μm CMOS process. The use of aggressive gain reduction in the residue amplifier combined with a suitable capacitive array digital-to-analog converter (DAC) topology in the second-stage simplifies the design of the operational transconductance amplifier (OTA) while eliminating excessive capacitive load and consequent power consumption. A comprehensive power consumption analysis of the entire ADC is performed to determine the number of bits in each stage of the pipeline. Choice of a segmented capacitive array DAC and attenuation capacitorbased DAC for the first and second stages respectively enable significant reduction in power consumption and area. Fabricated in a low-cost 0.35-μm CMOS process, the prototype ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 78.9 dB corresponding to an effective number of bits (ENOB) of 12.8-bit at a sampling frequency of 1 kS/s and provides a Schreier figure-of-merit (FoM) of 157.6 dB. Without any form of calibration, the ADC maintains an ENOB > 12.1-bit up to the Nyquist bandwidth of 500 Hz while consuming 6.7 μW. Core area of the ADC is 0.679 mm2.The second work is a 14-bit, tunable bandwidth two-stage pipelined SAR ADC which is suitable for low-power, cost-effective sensor readout circuits. To overcome the high open-loop DC gain requirement of the OTA in the gain-stage, a 3-stage capacitive charge pump (CCP) is utilized to achieve the gain-stage instead of using the switch capacitor (SC) amplifier. Unity-gain OTAs have been used as the analog buffers to prevent the charge sharing between the CCP stages. The detailed design considerations are given in this work. The prototype ADC, designed and fabricated in a low-cost 0.35-μm CMOS process, achieves a peak SNDR of 75.6 dB at a sampling rate of 20 kS/s and 76.1 dB at 200 kS/s while consuming 7.68 μW and 96 μW, respectively. The corresponding Schreier FoM are 166.7 dB and 166.3 dB. Since the bandwidth of CCP is tunable, the ADC maintains a SNDR > 75 dB upto 260 kHz. The core area occupied by the ADC is 0.589 mm2.As the low-power sensors might be active only for very short time triggered by an external pulse to acquire the data, the third work is a 14-bit asynchronous two-stage pipelined SAR ADC which has been designed and simulated in 0.18-μm CMOS process. A self-synchronous loop based on an edge detector is utilized to generate an internal clock with variable phase. A tunable delay element enables to allocate the available time for the switch capacitor DACs and the gain-stage. Three separate asynchronous clock generators are implemented to create the control signals for two sub-ADCs and the gain-stage between. Aiming to reduce the power consumption of the gain-stage, simple source followers as the analog buffers are implemented in the 3-stage CCP gain-stage. Post-layout simulation results show that the ADC achieves a SNDR of 83.5 dB while consuming 2.39 μW with a sampling rate of 10 kS/s. The corresponding Schreier FoM is 176.7 dB.
  •  
3.
  • Duong, Quoc-Tai (författare)
  • Efficient Integrated Circuits for Wideband Wireless Transceivers
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The proliferation of portable communication devices combined with the relentless demand for higher data rates has spurred the development of wireless communication standards which can support wide signal bandwidths. Benefits of the complementary metal oxide semiconductor (CMOS) process such as high device speeds and low manufacturing cost have rendered it the technology of choice for implementing wideband wireless transceiver integrated circuits (ICs). This dissertation addresses the key challenges encountered in the design of wideband wireless transceiver ICs. It is divided into two parts. Part I describes the design of crucial circuit blocks such as a highly selective wideband radio frequency (RF) front-end and an on-chip test module which are typically found in wireless receivers. The design of high-speed, capacitive DACs for wireless transmitters is included in Part II.The first work in Part I is the design and implementation of a wideband RF frontend in 65-nm CMOS. To achieve blocker rejection comparable to surface-acousticwave (SAW) filters, the highly selective and tunable RF receiver utilizes impedance transformation filtering along with a two-stage architecture. It is well known that the low-noise amplifier (LNA) which forms the first front-end stage largely decides the receiver performance in terms of noise figure (NF) and linearity (IIP3/P1dB). The proposed LNA uses double cross-coupling technique to reduce NF while complementary derivative superposition (DS) and resistive feedback are employed to achieve high linearity. The resistive feedback also enhances input matching. In measurements, the front-end achieves performance comparable to SAW filters with blocker rejection greater than 38 dB, NF 3.2–5.2 dB, out-of-band IIP3 > +17 dBm and blocker P1dB > +5 dBm over a frequency range of 0.5–3 GHz.The second work in Part I is the design of an RF amplitude detector for on-chip test. As the complexity of RF ICs continues to grow, the task of testing and debugging them becomes increasingly challenging. The degradation in performance or the drift from the optimal operation points may cause systems to fail. To prevent this effect and ensure acceptable performance in the presence of process, voltage and temperature variations (PVT), test and calibration of the RF ICs become indispensable. A wideband, high dynamic range RF amplitude detector design aimed at on-chip test is proposed. Gain-boosting and sub-ranging techniques are applied to the detection circuit to increase the gain over the full range of input amplitudes without compromising the input impedance. A technique suitable for on-chip third/second-order intercept  point (IP3/IP2) test by embedded RF detectors is also introduced.Part II comprises the design and analysis of high-speed switched-capacitor (SC) DACs for 60-GHz radio transmitters. The digital-to-analog converter (DAC) is one of the fundamental building blocks of transmitters. SC DACs offer several advantages over the current-steering DAC architecture. Specifically, lower capacitor mismatch helps the SC DAC to achieve higher linearity. The switches in the SC DAC are realized by MOS transistors in the triode region which substantially relaxes the voltage headroom requirement. Consequently, SC DACs can be implemented using lower supply voltages in advanced CMOS process nodes compared to their currentsteering counterparts. The first work in Part II analyzes the factors limiting the performance of capacitive pipeline DACs. It is shown that the DAC performance is  limited mainly by the clock feed-through and settling effects in the SC  arrays while the impact of capacitor mismatch and kT/C noise are found to be negligible. Based on this analysis, the second work in Part II proposes the split-segmented SC array DAC to overcome the clock feed-through problem since this topology eliminates pipelined charge propagation. Implemented in 65-nm CMOS, the 12-bit SC DAC achieves a Spurious Free Dynamic Range (SFDR) greater than 44 dB within the input signal bandwidth (BW) of 1 GHz with on-chip memory embedded for digital data generation. Power dissipation is 50 mW from 1.2 V supply. Similar performance is achieved with a lower supply voltage (0.9 V) which shows the scalability of the SC DAC for more advanced CMOS technologies. Furthermore, the proposed SC DAC satisfies the spectral mask of the IEEE 802.11ad WiGig standard with a second-order reconstruction filter and hence it can be used for the 60-GHz radio baseband.
  •  
4.
  • Fazli Yeknami, Ali (författare)
  • Low-Power Delta-Sigma Modulators for Medical Applications
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biomedical electronics has gained significant attention in healthcare. A general biomedical device comprises energy source, analog-to-digital conversion (ADC), digital signal processing, and communication subsystem, each of which must be designed for minimum energy consumption to adhere to the stringent energy constraint.The ADC is a key building block in the sensing stage of the implantable biomedical devices. To lower the overall power consumption and allow full integration of a complete biomedical sensor interface, it is desirable to integrate the entire analog front-end, back-end ADC and digital processor in a single chip. While digital circuits benefit substantially from the technology scaling, it is becoming more and more difficult to meet the stringent requirements on linearity, dynamic range, and power-efficiency at lower supply voltages in traditional ADC architectures. This has recently initiated extensive investigations to develop low-voltage, lowpower, high-resolution ADCs in nanometer CMOS technologies. Among different ADCs, the ΔΣ converter has shown to be most suitable for high-resolution and low-speed applications due to its high linearity feature.This thesis investigates the design of high-resolution and power-efficient ΔΣ modulators at very low frequencies. In total, eight discrete-time (DT) modulators have been designed in a 65nm CMOS technology: two active modulators, two hybrid active-passive modulators, two ultra-low-voltage modulators operated at 270mV and 0.5V supply voltages, one fully passive modulator, and a dual-mode ΔΣ modulator using variable-bandwidth amplifiers.The two active modulators utilize traditional feedback architecture. The first design presents a simple and robust low-power second-order ΔΣ modulator for accurate data conversion in implantable rhythm management devices such as cardiac pacemakers. Significant power reduction is achieved by utilizing a two-stage load-compensated OTA as well as the low-Vth devices in analog circuits and switches. An 80dB SNR (13-bit) was achieved at the cost of 2.1μW power in 0.033mm2 chip core area. The second design introduces a third-order modulator adopting the switched-opamp and partially body-driven gain-enhanced techniques in the OTAs for low-voltage and low-power consumption. The modulator achieves 87dB SNDR over 500Hz signal bandwidth, consuming 0.6μW at 0.7V supply.The two hybrid modulators were designed using combined SC active and passive integrators to partially eliminate the analog power associated with the active blocks. The first design employs an active integrator in the 1st stage and a passive integrator in the less critical 2nd stage. A 73.5dB SNR (12-bit) was achieved at the cost of 1.27μW power in a 0.059mm2 chip core area. The latter modulator utilizes a fourth-order active-passive loop filter with only one active stage. The input-feedforward architecture is used to improve the voltage swing prior to the comparator of the traditional passive modulators, which enables a simpler comparator design without requiring a preamplifier. It also allows the use of three successive passive filters to obtain a higher-order noise shaping. The modulator attains 84dB SNR while dissipating 0.4μW power at a 0.7V supply.Two ultra-low-voltage DT modulators operating at 0.5V and the state-of-the-art 270mV power supplies were proposed. The former modulator employs fully passive loop filter followed by a 0.5V preamplifier and dynamic comparator, whereas the latter one exploits the inverter-based integrators combined with clock boosting scheme for adequate switches overdrive voltage. The first design incorporates a gain-boosted scheme using charge redistribution amplification in the passive filter as well as a body-driven gain-enhanced preamplifier prior to the comparator in order to compensate for the gain shortage. It attains 75dB SNR consuming 250nW power, which is a record amongst the state-of-the-art ultra-lowpower ΔΣ modulators. The second design uses feedforward architecture that suggests low integrators swing, enabling ultra-low-voltage operation. The degraded gain, GBW and SR of the inverter amplifiers operating at such a low voltage are enhanced by a simple current-mirror output stage. The attained FOM is 0.31pJ/step.A fully passive DT modulator was presented aiming for analog power reduction, the dominant part of the power in the active modulators. A careful analysis of the non-idealities in the passive filter, including the noise, parasitic effect, and integrator’s leakage were essential to meet the performance requirement necessary for an implantable device. The chip was tested simultaneously with its active counterpart, showing significant power reduction at the cost of 4× core area and 12dB SNR loss.The designed dual-mode modulator employs variable-bandwidth amplifiers in combination with oversampling ratio to provide tunable resolution. This work presents the design, implementation, and test results of a two-stage amplifier using the second stage replica, that provides tunable GBW with consistent DC gain.
  •  
5.
  • Fritzin, Jonas, 1980- (författare)
  • CMOS RF Power Amplifiers for Wireless Communications
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The wireless market has experienced a remarkable development and growth since the introduction of the first modern mobile phone systems, with a steady increase in the number of subscribers, new application areas, and higher data rates. As mobile phones and wireless connectivity have become consumer mass markets, the prime goal of the IC manufacturers is to provide low-cost solutions.The power amplifier (PA) is a key building block in all RF transmitters. To lower the costs and allow full integration of a complete radio System-on-Chip (SoC), it is desirable to integrate the entire transceiver and the PA in a single CMOS chip. While digital circuits benefit from the technology scaling, it is becoming harder to meet the stringent requirements on linearity, output power, bandwidth, and efficiency at lower supply voltages in traditional PA architectures. This has recently triggered extensive studies to investigate the impact of different efficiency enhancement and linearization techniques, like polar modulation and outphasing, in nanometer CMOS technologies.This thesis addresses the potential of integrating linear and power-efficient PAs in nanometer CMOS technologies at GHz frequencies. In total eight amplifiers have been designed - two linear Class-A PAs, two switched Class-E PAs, and four Class-D PAs linearized in outphasing configurations. Based on the outphasing PAs, amplifier models and predistorters have been developed and evaluated for uplink (terminal) and downlink (base station) signals.The two linear Class-A PAs with LC-based and transformer-based input and interstage matching networks were designed in a 65nm CMOS technology for 2.4GHz 802.11n WLAN. For a 72.2Mbit/s 64-QAM 802.11n OFDM signal with PAPR of 9.1dB, both PAs fulfilled the toughest EVM requirement in the standard at average output power levels of +9.4dBm and +11.6dBm, respectively. The two PAs were among the first PAs implemented in a 65nm CMOS technology.The two Class-E PAs, intended for DECT and Bluetooth, were designed in 130nm CMOS and operated at low ‘digital’ supply voltages. The PAs delivered +26.4 and +22.7dBm at 1.5V and 1.0V supply voltages with PAE of 30% and 36%, respectively. The Bluetooth PA was based on thin oxide devices and the performance degradation over time for a high level of oxide stress was evaluated.The four Class-D outphasing PAs were designed in 65nm, 90nm, and 130nm CMOS technologies. The first outphasing design was based on a Class-D stage utilizing a cascode configuration, driven by an AC-coupled low-voltage driver, to allow a 5.5V supply voltage in a 65nm CMOS technology without excessive device voltage stress. Two on-chip transformers combined the outputs of four Class-D stages. At 1.95GHz the PA delivered +29.7dBm with a PAE of 26.6%. The 3dB bandwidth was  1.6GHz, representing state-of-the-art bandwidth for CMOS Class-D RF PAs. After one week of continuous operation, no performance degradation was noticed. The second design was based on the same Class-D stage, but combined eight amplifier stages by four on-chip transformers in 130nm CMOS to achieve a state-of-the-art output power of +32dBm for CMOS Class-D RF PAs. Both designs met the ACLR and modulation requirements without predistortion when amplifying uplink WCDMA and 20MHz LTE signals.The third outphasing design was based on two low-power Class-D stages in 90nm CMOS featuring a harmonic suppression technique, cancelling the third harmonic in the output spectrum which also improves drain efficiency. The proposed Class-D stage creates a voltage level of VDD/2 from a single supply voltage to shape the drain voltage, uses only digital circuits and eliminates the short-circuit current present in inverter-based Class-D stages. A single Class-D stage delivered +5.1dBm at 1.2V supply voltage with a drain efficiency and PAE of 73% and 59%, respectively. Two Class-D stages were connected to a PCB transformer to create an outphasing amplifier, which was linear enough to amplify EDGE and WCDMA signals without the need for predistortion.The fourth outphasing design was based on two Class-D stages  connected to an on-chip transformer with peak power of +10dBm. It was used in the development of a behavioral model structure and model-based phase-only predistortion method suitable for outphasing amplifiers to compensate for both amplitude and phase mismatches. In measurements for EDGE and WCDMA signals, the predistorter improved the margin to the limits of the spectral mask and the ACLR by more than 12dB. Based on a similar approach, an amplifier model and predistortion method were developed and evaluated for the +32dBm Class-D PA design using a downlink WCDMA signal, where the ACLR was improved by 13.5dB. A least-squares phase predistortion method was developed and evaluated for the +30dBm Class-D PA design using WCDMA and LTE uplink signals, where the ACLR was improved by approximately 10dB.
  •  
6.
  • Hansson, Martin, 1978- (författare)
  • Low-Power Clocking and Circuit Techniques for Leakage and Process Variation Compensation
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Over the last four decades the integrated circuit industry has evolved in a tremendous pace. This success has been driven by the scaling of device sizes leading to higher and higher integration capability, which have enabled more functionality and higher performance. The impressive evolution of modern high-performance microprocessors have resulted in chips with over a billion transistors as well as multi-GHz clock frequencies. As the silicon integrated circuit industry moves further into the nanometer regime, scaling of device sizes is still predicted to continue at least into the near future. However, there are a number of challenges to overcome to be able to continue the increase of integration at the same pace. Three of the major challenges are increasing power dissipation due to clocking of synchronous circuit, increasing leakage currents causing growing static power dissipation and reduced circuit robustness, and finally increasing spread in circuit parameters due to physical limitations in the manufacturing process. This thesis presents a number of circuit techniques that aims to help in all three of the mentioned challenges.Power dissipation related to the clock generation and distribution is identified as the dominating contributor of the total active power dissipation for multi-GHz systems. As the complexity and size of synchronous systems continues to increase, clock power will also increase. This makes novel power reduction techniques absolutely crucial in future VLSI design. In this thesis an energy recovering clocking technique aimed at reducing the total chip clock power is presented. Based on theoretical analysis the technique is shown to enable considerable clock power savings. Moreover, the impact of the proposed technique on conventional flip-flop topologies is studied. Measurements on an experimental chip design proves the technique, and shows more than 56% lower clock power compared to conventional clock distribution techniques at clock frequencies up to 1.76 GHz.Static leakage power dissipation is a considerable contributor to the total power dissipation. This power is dissipated even for circuits that are idle and not contributing to the operation. Hence, with increasing number of transistors on each chip, circuit techniques which reduce the static leakage currents are necessary. In this thesis a technique is discussed which reduces the static leakage current in a microcode ROM resulting in 30% reduction of the leakage power with no area or performance penalty.Apart from increasing static power dissipation the increasing leakage currents also impact the robustness constraints of the circuits. This is important for regenerative circuits like flip-flops and latches where a changed state due to leakage will lead to loss of functionality. This is a serious issue especially for high-performance dynamic circuits, which are attractive in order to limit the clock load in the design. However, with the increasing leakage the robustness of dynamic circuits reduces dramatically. To improve the leakage robustness for sub-90 nm low clock load dynamic flip-flops, a novel keeper technique is proposed. The proposed keeper utilizes a scalable and simple leakage compensation technique, which is implemented on a reconfigurable flip-flop. At normal clock frequencies the flip-flop is configured in dynamic mode, and reduces the clock power by 25% due to the lower clock load. During any low-frequency operation, the flip-flop is configured as a static flip-flop retaining full functional robustness.As scaling continues further towards the fundamental atomistic limits, several challenges arise for continuing industrial device integration. Large inaccuracies in lithography process, impurities in manufacturing, and reduced control of dopant levels during implantation all cause increasing statistical spread of performance, power, and robustness of the devices. In order to compensate the impact of the increasingly large process variations on latches and flip-flops, a reconfigurable keeper technique is presented in this thesis. In contrast to the traditional design for worst-case process corners, a variable keeper circuit is utilized. The proposed reconfigurable keeper preserves the robustness of storage nodes across the process corners without degrading the overall chip performance.
  •  
7.
  • Harikumar, Prakash (författare)
  • Low-Voltage Analog-to-Digital Converters and Mixed-Signal Interfaces
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Analog-to-digital converters (ADCs) are crucial blocks which form the interface between the physical world and the digital domain. ADCs are indispensable in numerous applications such as wireless sensor networks (WSNs), wireless/wireline communication receivers and data acquisition systems. To achieve long-term, autonomous operation for WSNs, the nodes are powered by harvesting energy from ambient sources such as solar energy, vibrational energy etc. Since the signal frequencies in these distributed WSNs are often low, ultra-low-power ADCs with low sampling rates are required. The advent of new wireless standards with ever-increasing data rates and bandwidth necessitates ADCs capable of meeting the demands. Wireless standards such as GSM, GPRS, LTE and WLAN require ADCs with several tens of MS/s speed and moderate resolution (8-10 bits). Since these ADCs are incorporated into battery-powered portable devices such as cellphones and tablets, low power consumption for the ADCs is essential.The first contribution is an ultra-low-power 8-bit, 1 kS/s successive approximation register (SAR) ADC that has been designed and fabricated in a 65-nm CMOS process. The target application for the ADC is an autonomously-powered soil-moisture sensor node. At VDD = 0.4 V, the ADC consumes 717 pW and achieves an FoM = 3.19 fJ/conv-step while meeting the targeted dynamic and static performance. The 8-bit ADC features a leakage-suppressed S/H circuit with boosted control voltage which achieves > 9-bit linearity. A binary-weighted capacitive array digital-to-analog converter (DAC) is employed with a very low, custom-designed unit capacitor of 1.9 fF. Consequently the area of the ADC and power consumption are reduced. The ADC achieves an ENOB of 7.81 bits at near-Nyquist input frequency. The core area occupied by the ADC is only 0.0126 mm2.The second contribution is a 1.2 V, 10 bit, 50 MS/s SAR ADC designed and implemented in 65 nm CMOS aimed at communication applications. For medium-to-high sampling rates, the DAC reference settling poses a speed bottleneck in charge-redistribution SAR ADCs due to the ringing associated with the parasitic inductances. Although SAR ADCs have been the subject of intense research in recent years, scant attention has been laid on the design of high-performance on-chip reference voltage buffers. The estimation of important design parameters of the buffer as well critical specifications such as power-supply sensitivity, output noise, offset, settling time and stability have been elaborated upon in this dissertation. The implemented buffer consists of a two-stage operational transconductance amplifier (OTA) combined with replica source-follower (SF) stages. The 10-bit SAR ADC utilizes split-array capacitive DACs to reduce area and power consumption. In post-layout simulation which includes the entire pad frame and associated parasitics, the ADC achieves an ENOB of 9.25 bits at a supply voltage of 1.2 V, typical process corner and sampling frequency of 50 MS/s for near-Nyquist input. Excluding the reference voltage buffer, the ADC consumes 697 μW and achieves an energy efficiency of 25 fJ/conversion-step while occupying a core area of 0.055 mm2.The third contribution comprises five disparate works involving the design of key peripheral blocks of the ADC such as reference voltage buffer and programmable gain amplifier (PGA) as well as low-voltage, multi-stage OTAs. These works are a) Design of a 1 V, fully differential OTA which satisfies the demanding specifications of a PGA for a 9-bit SAR ADC in 28 nm UTBB FDSOI CMOS. While consuming 2.9 μW, the PGA meets the various performance specifications over all process corners and a temperature range of [−20◦ C +85◦ C]. b) Since FBB in the 28 nm FDSOI process allows wide tuning of the threshold voltage and substantial boosting of the transconductance, an ultra-low-voltage fully differential OTA with VDD = 0.4 V has been designed to satisfy the comprehensive specifications of a general-purpose OTA while limiting the power consumption to 785 nW. c) Design and implementation of a power-efficient reference voltage buffer in 1.8 V, 180 nm CMOS for a 10-bit, 1 MS/s SAR ADC in an industrial fingerprint sensor SoC. d) Comparison of two previously-published frequency compensation schemes on the basis of unity-gain frequency and phase margin on a three-stage OTA designed in a 1.1 V, 40-nm CMOS process. Simulation results highlight the benefits of split-length indirect compensation over the nested Miller compensation scheme. e) Design of an analog front-end (AFE) satisfying the requirements for a capacitive body-coupled communication receiver in a 1.1 V, 40-nm CMOS process. The AFE consists of a cascade of three amplifiers followed by a Schmitt trigger and digital buffers. Each amplifier utilizes a two-stage OTA with split-length compensation.
  •  
8.
  • Kifle, Yonatan Habteslassie, 1984- (författare)
  • Studies On Design of Near-Field Wireless-Powered Biphase Implantable Stimulators
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Portable and implantable electronics are becoming increasingly important in the healthcare sector. One of the challenges is to guarantee stable systems for longer periods of time. If we consider applications such as electrical nerve stimulation or implanted ion pumps, the requirements for, e.g., levels, duration, etc., vary over time, and there may be a need to be able to remotely reconfigure devices, which in turn extends the life of the implant.  This dissertation studies the efficient healthcare wireless network, wireless power supply, and its use in implantable biomedical systems. The body-area network (BAN) and near-field communication (NFC) are studied. Several Application Specific Integrated Circuits (ASICs) solutions are implemented, manufactured, and characterized. ASICs for portable and implantable sensors and actuators still have high research value. In addition, advances in flexible, implantable inductive coils, along with near-field energy harvesting technology, have driven the development of wireless, implantable devices. The ASICs are used to initiate and generate controlled signals that govern actuators in multiple locations in the body. Electronics specifications may include operations related to tissue-specific absorption rate, stimulation duration or levels to avoid tissue temperature rise, power transmission distance, and controlled current or voltage drivers. In this work, the feasibility of BAN as a healthcare network has been investigated. The functionality of an existing BodyCom communication system was expanded, sensors and actuators are added. The system enables data transfer between several sensor nodes placed on a human body. In BAN, the information is propagated along the skin in a capacitive, electric field. The network was demonstrated with a sensor node (stretchable glove) and implantable ion pump (actuator) for drug delivery. With the stretchable glove, movement patterns could be captured, and ions were delivered from a reservoir in the ion pump.  Furthermore, NFC is studied, and the advantages of NFC compared to BAN are discussed. An ST Microelectronics system was used together with a planar coil developed on a flexible plastic substrate to demonstrate the concept. The efficiency between the primary and secondary coils is measured and characterized. A temperature sensor was chosen as the implantable sensor, and the signal strength at several distances between the primary and secondary inductive coils is characterized.  The next phase of the work focuses on the implementation of ASICs. The first proposed system describes a wirelessly powered peripheral nerve stimulator. The system contains a full-wave rectifier-based energy harvester that operates at 13.56 MHz with the option to select a stimulation current. The stimulation current can be selected in the range of 15 nA up to 1 mA. A reference clock is extracted from the AC input and used to synchronize the data and generate the required control. In addition, a state machine is used to generate the time parameters required for cathodic and anodic nerve stimulation. The design is fabricated in the standard 180 nm CMOS process and is 0.22 mm2 large, excluding an integrated 3.6 nF capacitor. The chip is measured to verify the energy harvester, power cells, and timing control logic with an input amplitude |VAC | = 3 V and a load of 1 kΩ.  Subsequently, a multichannel system was developed that makes it possible to dynamically set the biphase simulation profile. The amplitude modulated data packets transmitted through the inductively coupled interface are demodulated, and the information is extracted. The data stream is then used to generate control signals that activate the desired configuration (channel, stream, time, etc.). 
  •  
9.
  • Mesgarzadeh, Behzad, 1977- (författare)
  • Low-Power Low-Jitter Clock Generation and Distribution
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Today’s microprocessors with millions of transistors perform high-complexitycomputing at multi-gigahertz clock frequencies. Clock generation and clockdistribution are crucial tasks which determine the overall performance of amicroprocessor. The ever-increasing power density and speed call for newmethodologies in clocking circuitry, as the conventional techniques exhibit manydrawbacks in the advanced VLSI chips. A significant percentage of the total dynamicpower consumption in a microprocessor is dissipated in the clock distributionnetwork. Also since the chip dimensions increase, clock jitter and skew managementbecome very challenging in the framework of conventional methodologies. In such asituation, new alternative techniques to overcome these limitations are demanded.The main focus in this thesis is on new circuit techniques, which treat thedrawbacks of the conventional clocking methodologies. The presented research in thisthesis can be divided into two main parts. In the first part, challenges in design ofclock generators have been investigated. Research on oscillators as central elements inclock generation is the starting point to enter into this part. A thorough analysis andmodeling of the injection-locking phenomenon for on-chip applications show greatpotential of this phenomenon in noise reduction and jitter suppression. In thepresented analysis, phase noise of an injection-locked oscillator has been formulated.The first part also includes a discussion on DLL-based clock generators. DLLs haverecently become popular in design of clock generators due to ensured stability,superior jitter performance, multiphase clock generation capability and simple designprocedure. In the presented discussion, an open-loop DLL structure has beenproposed to overcome the limitations introduced by DLL dithering around the averagelock point. Experimental results reveals that significant jitter reduction can beachieved by eliminating the DLL dithering. Furthermore, the proposed structuredissipates less power compared to the traditional DLL-based clock generators.Measurement results on two different clock generators implemented in 90-nm CMOSshow more than 10% power savings at frequencies up to 2.5 GHz.In the second part of this thesis, resonant clock distribution networks have beendiscussed as low-power alternatives for the conventional clocking schemes. In amicroprocessor, as clock frequency increases, clock power is going to be thedominant contributor to the total power dissipation. Since the power-hungry bufferstages are the main source of the clock power dissipation in the conventional clock distribution networks, it has been shown that the bufferless solution is the mosteffective resonant clocking method. Although resonant clock distribution shows greatpotential in significant clock power savings, several challenging issues have to besolved in order to make such a clocking strategy a sufficiently feasible alternative tothe power-hungry, but well-understood, conventional clocking schemes. In this part,some of these issues such as jitter characteristics and impact of tank quality factor onoverall performance have been discussed. In addition, the effectiveness of theinjection-locking phenomenon in jitter suppression has been utilized to solve the jitterpeaking problem. The presented discussion in this part is supported by experimentalresults on a test chip implemented in 130-nm CMOS at clock frequencies up to 1.8GHz.
  •  
10.
  • Morales Chacón, Oscar, 1985- (författare)
  • Studies on the Performance Bounds and Design of Current-Steering DACs
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Digital-to-analog converters (DACs) are key building blocks in various applications including radar and wireless communications. With the exponential growth of data throughput in modern communication standards, e.g., fifthgeneration (5G), DACs has been pushed to achieve direct frequency synthesis in the GHz-range with channel bandwidths preferably beyond 1 GHz. Yet, higher frequency synthesis results in augmented power consumption, which can significantly impact the wireless network if multiple DACs are utilized, e.g., in massive multiple-input and multiple-output (MIMO) antenna systems with digital beamforming as well as in end-user’s handheld devices subject to a less prolonged battery life. Moreover, advances in digital signal processing and integrated-circuit fabrication, leading to reduced power consumption and cost as well as more flexibility in software-defined radio transmitters have motivated the displacement of analog/RF circuits to the digital domain. At the same time, driving the DACs to cover the millimeter- Wave (mm-Wave) spectrum, ranging between 30-300 GHz. In this work, high-speed DACs operating in the GHz-range with maintained low power consumption is addressed. The Nyquist-rate DAC is chosen due to its simple conversion approach to facilitate the generation of channel bandwidths in the GHz-range.A 10-bit current-steering (CS) Nyquist DAC realized in 65-nm CMOS is presented. The design is intended for low-complexity and power consumption while targeting high-speed operation with over 1 GHz channel bandwidth and maintained linearity. The binary-weighted architecture is considered to achieve straightforward digital-to-analog conversion. Next, a theoretical analysis to obtain the energy consumption bounds in CS DACs is presented. The analysis considers the digital, mixed-signal and analog power domains as well as the design corners of noise, speed and linearity. This is validated from reported measurement results in published CS DACs implemented in CMOS technology. Furthermore, design considerations with enhancement techniques are addressed. A digital switching scheme to avoid complementary switching transitions and counteract for timing errors is presented. The proposed scheme improves also the yield in linearity due to stochastic amplitude errors with reduced switching activity. Then, a comparative analysis of latch-drivers commonly implemented in CS DACs is realized. The comparison includes single- and dual-clocked latch-drivers and an alternative solution is proposed to reduce the switching-delay and power consumption.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy