SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:0345 7524 ;pers:(Holtz Per Olof Professor)"

Sökning: L4X0:0345 7524 > Holtz Per Olof Professor

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adnane, Bouchaib (författare)
  • Optical characterization of Silicon-based self-assembled nanostructures
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This PhD thesis summarizes the work carried on the optical characterizations of some Si-based self-assembled nanostructures, particularly SiGe/Si quantum dots (QDs) and nanocrystalline (nc)-Si embedded in mesoporous silica (MS) using photoconductivity (PC), photoluminescence (PL), and photoluminescence excitation (PLE) measurements. The spectroscopic studies of SiGe/Si QDs grown on Si by molecular beam epitaxy revealed for the first time well-resolved PLE resonances. When correlated with numerical analysis, these resonances were directly related to the co-existence of spatially direct (inside the SiGe dot) and indirect (across the Si/Ge interface) recombination processes involving different dot populations selected by the monitored detection energy for PLE acquisition. The characteristics of these two transitions were further studied in detail by PLE (in some case implemented together with selective PL) on various samples, which contained either only one Ge dot layer or multiple Gedot/Si stacks, grown at substrate temperatures ranging from 430 to 580 °C; especially the temperature- and excitation power-dependence of the excitation properties. The results illustrated that the electronic structure of SiGe dots are influenced by size, Ge composition, as well as strain connected, and sometimes a mixed effect. Another attempt of the project was the fabrication of lateral transport mid-infrared photodetectors based on multiple Ge-dot/Si stacked structures. A broadband photoresponsivity of the processed multi-finger detectors was estimated to be about 90 mA/W over 3-15 μm range at 20 K, and the peaked photoresponse was measured at ~10 μm. The origin of the measured photocurrent, as elucidated by photoluminescence and photoluminescence excitation spectroscopies, was related to intersubband absorption of normal incidence infrared radiation corresponding to energies between the ground states of the heavy hole and the light hole in the valence band of the SiGe/Si QDs, and subsequent charge transfer to the Ge 2D wetting layer acting as a conduction channel. The absence of photocurrent in the energy range expected for a transition from the ground state to the first excited state of the heavy hole indicated that the holes in the SiGe dots behave essentially as 2D in character rather than a truly 3D confinement, where the transitions between heavy holes states are not allowed for TE polarized radiation (normal incidence). Finally, Si(or Ge) nanocrystals embedded in mesoporous silica samples prepared by spincoating and atomic layer chemical vapor deposition were optically investigated by means of PL with various excitation powers, together with several attempts using different post rapid thermal annealing processes. The shape and energy position of the PL spectra of the nc-Si embedded in MS samples and a reference MS template without nc incorporation were rather similar, but the luminescence was much more intense for those embedded with nanocrystals. This implies that the emission mechanism for MS samples with or without nc-Si could be the same, i.e., the light emission was governed by the surface properties of silica. The semiconductor nanocrystals played a role by sensitizing the luminescence emission through generating more photo-excited carriers. These carriers were then trapped in the defect state e.g. the interfacial oxygen defect sites and subsequently recombine to increase the PL intensity.
  •  
2.
  • Amloy, Supaluck, 1980- (författare)
  • Polarization-resolved photoluminescence spectroscopy of III-nitride quantum dots
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, results from studies on (In)GaN quantum dots (QDs) are presented, including investigations of the structural, optical and electronic properties. The experimental studies were performed on GaN and InGaN QDs grown by molecular beam epitaxy, taking advantage of the Stranki-Krastanov growth mode for the GaN QD samples and the composition segregation for the InGaN QD samples.Optical spectroscopy of the (In)GaN QDs was performed with a combination of different experimental techniques, e.g. stationary microphotoluminescence (μPL) and timeresolved μPL. The μPL spectroscopy is suitable for studies of single QDs due to the wellfocused excitation laser spot, and it typically does not require any special sample preparation. The powerful combination of power and polarization dependences was used to distinguish the exciton and the biexciton emissions from other emission lines in the recorded spectra.The QDs could be observed with random in-plane anisotropy, as determined by the strong linear polarization for single QDs but with different angular orientation from dot to dot. Additionally, these experimental results are in good agreement with the computational results revealing a similar degree of polarization for the exciton and the biexciton emissions. Further, the theory predicts that the discrepancy of the polarization degree is larger between the positive and negative trions in comparison with the exciton and the biexciton. Based on this result, polarization resolved spectroscopy is proposed as a simple tool for the identification of trions and their charge states.The fine-structure splitting (FSS) and the biexciton binding energy (Ebxx) are essential QD parameters of relevance for the possible generation of quantum entangled photon pairs in a cascade recombination of the biexciton. In general, the Coulomb interaction between the negatively charged electron and the positively charged hole lifts the fourfold degeneracy of the electron and hole pair ground state, forming a set of zero-dimensional exciton states of unequal energies. This Coulomb-induced splitting, referred to as the FSS, results in an electronic fine structure, which is strongly dependent on the symmetry of the exciton wave function. The FSS was in this work resolved and investigated for excitons in InGaN QDs, using polarization-sensitive μPL spectroscopy employed on the cleaved-edge of the samples. As expected, the FSS is found to exhibit identical magnitudes, but with reversed sign for the exciton and the biexciton. For quantum information applications, a vanishing FSS is required, since otherwise the emissions of the polarization-entangled photon pairs in the cascade biexciton recombination will be prohibited.The biexcitons are found to exhibit both positive and negative binding energies for the investigated QDs. Since a negative binding energy indicates a repulsive Coulomb interaction, such biexcitons (or exciton complexes) cannot exist in structures of higher dimensionality. On the other hand, a biexciton with a negative binding energy can be found in QDs, since the exciton complexes still remain bound due to their three dimensional confinement. Moreover, the biexciton binding energy depends on the dot size, which implies that a careful size control of dots could enable manipulation of the biexciton binding energy. A large Ebxx value enables better and cheaper spectral filtering, in order to purify the single photon emission, while a proposed time reordering scheme relies on zero Ebxx for the generation of entangled photons.The dynamics of the exciton and the biexciton emissions from InGaN QD were measured by means of time-resolved μPL. The lifetimes of the exciton related emissions are demonstrated to depend on the dot size. Both the exciton and the biexciton emissions reveal mono-exponential decays, with a biexciton lifetime, which is about two times shorter than the exciton lifetime. This implies that the QD is small, with a size comparable to the exciton Bohr radius. The photon generation rates can be manipulated by controlling the QDs size, which in turn can be utilized for generation of single- and entangled-photons on demand, with a potential for applications in e.g. quantum information.The polarization of the emitted single photons can be manipulated by using a polarizer, but to the prize of photon loss and reduced emission intensity. Alternative methods to control the polarization of the emission light are a manipulation of the dot symmetry statically by its shape or dynamically by an externally applied electric field. Predictions based on performed calculations show that in materials with a small spin-orbit split-off energy (ΔSO), like the III-nitride materials, the polarization degree of the emission is more sensitive to dot asymmetry than in materials with a large value for ΔSO, e.g. the III-arsenide materials. Moreover, for an electric field applied in the 1͞10 and the 11͞2 directions of the zinc-blende lens-shaped QDs grown on the (111) plane, the polarization degree of InN QDs is found to be significantly more, by a factor of ~50 times, sensitive to the electric field than for GaN QDs. This work demonstrates that especially the InN based QD, are suitable for manipulation of the polarization by the direct control of the dot symmetry or by externally applied electric fields.
  •  
3.
  • Dufåker, Daniel, 1971- (författare)
  • Few particle effects in pyramidal quantum dots - a spectroscopic study
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis two very similar processes have been studied, both involving excitations of particles during recombination of exciton complexes in quantum dots, reducing the energy of the emitted photon. Different exciton complexes are defined according to the number of electrons and holes in the quantum dot upon recombination. The neutral exciton complexes with one electron and one hole (X) and two electrons and two holes (2X) respectively are referred to as the exciton and the biexciton. Accordingly the charged exciton complexes consisting of two electrons and one hole (X−) and one electron and two holes (X+), respectively, are referred to as negatively and positively charged excitons, respectively. Whenever another particle is excited during the recombination of one electron-hole pair within these complexes, the result is a weak satellite peak, spectrally redshifted with respect to the main emission peak related to the exciton complex.In the first part of this thesis, described in papers 1 - 3, the first and second order exciton-LO-phonon interaction is studied with weak satellite peaks, redshifted by the LOphonon energy (ћωLO or 2ћωLO), as the signature, referred to as phonon replicas. The intensity ratio between the first order replicas and the corresponding main emission were determined from the obtained micro-photoluminescence spectra. It was found that this ratio was significantly weaker for the positively charged exciton X+ compared to the neutral exciton, X, and the negatively charged exciton, X−. This experimentally obtained result was further supported by computations. Interestingly, the computations revealed that despite that X+ displays the weakest phonon replica among the investigated complexes, it possesses the strongest Fröhlich coupling to phonons in the lattice before recombination. The spectral broadening of the phonon replicas compared to the main emission is also discussed. The origin of the exciton-LO-phonon coupling is concluded to be from within the quantum dot (QD) itself, based on a comparison between quantum dots with different barriers. In addition, the measured intensity of the second order LO-phonon replica was approximately three times stronger than predictions made with the adiabatic Huang-Rhys theory but much weaker than the two orders in magnitude enhancement that was predicted when non adiabatic effects was included.Symmetrical QDs are a requirement for achieving entangled photon emission, desired for applications within quantum cryptography. In the fourth paper we relate the emission pattern of the doubly positively charged exciton X2+ to the symmetry of the QDs. In particular the splitting between the two low-energy components was found to be a measure of the asymmetry of the QDs. The emission pattern of the doubly charged exciton may then be used as a post-growth uninvasive selection tool were high-symmetry QDs could reliably be selected.In the last paper an additional weak redshifted satellite peak in the recombination spectra is studied. The intensity of this weak satellite peak is correlated to the peak intensity of the positively charged exciton, X+, main emission peak. In addition to this photoluminescence excitation experiments and computations further support our interpretation that the satellite peak is related to the shake-up of the ground state hole in the QD that is not involved in the optical recombination. This hole is excited by Coulomb interaction to an excited state yielding a photon energy that has been reduced with the difference between the ground state and the excited state of the spectator hole.
  •  
4.
  • Eriksson, Martin (författare)
  • Photoluminescence Characteristics of III-Nitride Quantum Dots and Films
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • III-Nitride semiconductors are very promising in both electronics and optical devices. The ability of the III-Nitride semiconductors as light emitters to span the electromagnetic spectrum from deep ultraviolet light, through the entire visible region, and into the infrared part of the spectrum, is a very important feature, making this material very important in the field of light emitting devices. In fact, the blue emission from Indium Gallium Nitride (InGaN), which was awarded the 2014 Nobel Prize in Physics, is the basis of the common and important white light emitting diode (LED).Quantum dots (QDs) have properties that make them very interesting for light emitting devices for a range of different applications, such as the possibility of increasing device efficiency. The spectrally well-defined emission from QDs also allows accurate color reproduction and high-performance communication devices. The small size of QDs, combined with selective area growth allows for an improved display resolution. By control of the polarization direction of QDs, they can be used in more efficient displays as well as in traditional communication devices. The possibility of sending out entangled photon pairs is another QD property of importance for quantum key distribution used for secure communication.QDs can hold different exciton complexes, such as the neutral single exciton, consisting of one electron and one hole, and the biexciton, consisting of two excitons. The integrated PL intensity of the biexciton exhibits a quadratic dependence with respect to the excitation power, as compared to the linear power dependence of the neutral single exciton. The lifetime of the neutral exciton is 880 ps, whereas the biexciton, consisting of twice the number of charge carriers and lacks a dark state, has a considerably shorter lifetime of only 500 ps. The ratio of the lifetimes is an indication that the size of the QD is in the order of the exciton Bohr radius of the InGaN crystal making up these QDs in the InGaN QW.A large part of the studies of this thesis has been focused on InGaN QDs on top of hexagonal Gallium Nitride (GaN) pyramids, selectively grown by Metal Organic Chemical Vapor Deposition (MOCVD). On top of the GaN pyramids, an InGaN layer and a GaN capping layer were grown. From structural and optical investigations, InGaN QDs have been characterized as growing on (0001) facets on truncated GaN pyramids. These QDs exhibit both narrow photoluminescence linewidths and are linearly polarized in directions following the symmetry of the pyramids.In this work, the neutral single exciton, and the more rare negatively charged exciton, have been investigated. At low excitation power, the integrated intensity of the PL peak of the neutral exciton increases linearly with the excitation power. The negatively charged exciton, on the other hand, exhibits a quadratic power dependence, just like that of the biexciton. Upon increasing the temperature, the power dependence of the negatively charged exciton changes to linear, just like the neutral exciton. This change in power dependence is explained in terms of electrons in potential traps close to the QD escaping by thermal excitation, leading to a surplus of electrons in the vicinity of the QD. Consequently, only a single exciton needs to be created by photoexcitation in order to form a negatively charged exciton, while the extra electron is supplied to the QD by thermal excitation.Upon a close inspection of the PL of the neutral exciton, a splitting of the peak of just below 0.4 meV is revealed. There is an observed competition in the integrated intensity between these two peaks, similar to that between an exciton and a biexciton. The high energy peak of this split exciton emission is explained in terms of a remotely charged exciton. This exciton state consists of a neutral single exciton in the QD with an extra electron or hole in close vicinity of the QD, which screens the built-in field in the QD.The InGaN QDs are very small; estimated to be on the order of the exciton Bohr radius of the InGaN crystal, or even smaller. The lifetimes of the neutral exciton and the negatively charged exciton are approximately 320 ps and 130 ps, respectively. The ratio of the lifetimes supports the claim of the QD size being on the order of the exciton Bohr radius or smaller, as is further supported by power dependence results. Under the assumption of a spherical QD, theoretical calculations predict an emission energy shift of 0.7 meV, for a peak at 3.09 eV, due to the built-in field for a QD with a diameter of 1.3 nm, in agreement with the experimental observations.Studying the InGaN QD PL from neutral and charged excitons at elevated temperatures (4 K to 166 K) has revealed that the QDs are surrounded by potential fluctuations that trap charge carriers with an energy of around 20 meV, to be compared with the exciton trapping energy in the QDs of approximately 50 meV. The confinement of electrons close to the QD is predicted to be smaller than for holes, which accounts for the negative charge of the charged exciton, and for the higher probability of capturing free electrons. We have estimated the lifetimes of free electrons and holes in the GaN barrier to be 45 ps and 60 ps, in consistence with excitons forming quickly in the barrier upon photoexcitation and that free electrons and holes get trapped quickly in local potential traps close to the QDs. This analysis also indicates that there is a probability of 35 % to have an electron in the QD between the photoexcitation pulses, in agreement with a lower than quadratic power dependence of the negatively charged exciton.InN is an attractive material due to its infrared emission, for applications such as light emitters for communication purposes, but it is more difficult to grow with high quality and low doping concentration as compared to GaN. QDs with a higher In-composition or even pure InN is an interesting prospect as being a route towards increased quantum confinement and room temperature device operation. For all optical devices, p-type doping is needed. Even nominally undoped InN samples tend to be heavily n-type doped, causing problems to make pn-junctions as needed for LEDs. In our work, we present Mg-doped p-type InN films, which when further increasing the Mg-concentration revert to n-type conductivity. We have focused on the effect of the Mg-doping on the light emission properties of these films. The low Mg doped InN film is inhomogeneous and is observed to contain areas with n-type conductivity, so called n-type pockets in the otherwise p-type InN film. A higher concentration of Mg results in a higher crystalline quality and the disappearance of the n-type pockets. The high crystalline quality has enabled us to determine the binding energy of the Mg dopants to 64 meV. Upon further increase of the Mg concentration, the film reverts to ntype conductivity. The highly Mg doped sample also exhibits a red-shifted emission with features that are interpreted as originating from Zinc-Blende inclusions in the Wurtzite InN crystal, acting as quantum wells. The Mg doping is an important factor in controlling the conductivity of InN, as well as its light emission properties, and ultimately construct InN-based devices.In summary, in this thesis, both pyramidal InGaN QDs and InGaN QDs in a QW have been investigated. Novel discoveries of exciton complexes in these QD systems have been reported. Knowledge has also been gained about the challenging material InN, including a study of the effect of the Mg-doping concentration on the semiconductor crystalline quality and its light emission properties. The outcome of this thesis enriches the knowledge of the III-Nitride semiconductor community, with the long-term objective to improve the device performance of III-Nitride based light emitting devices.
  •  
5.
  • Hsu, Chih-Wei (författare)
  • InGaN Quantum Dots Grown on GaN Pyramid Arrays
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Selective-area growth (SAG) of InGaN on GaN pyramids, which allows the formation of additional hybrid quantum structures, including quantum wires and quantum dots (QDs) in a site-controlled fashion, is attractive for both fundamental research and device application. The site-controlled growth of QDs showing sharp emission lines is seen as the first step toward the frontier quantum information application (QIA). Note that, in such case, one QD represents one device unless the challenge of fabricating identical QDs is overcome.The concept of SAG GaN pyramids hosting InGaN QDs has been reported since 2000. However, the observation of sharp emission lines, which can be ascribed to three-dimensional carrier confinement in QDs, seems to be occasional.The main outcome of this work is the investigation of the InGaN QDs grown on GaN hexagonal pyramids. This work covers the formation mechanism of InGaN QDs to the emission properties of individual InGaN QDs. A modified SAG approach to obtain InGaN QDs emitting photons with heralded polarization directions is also demonstrated. The inherent high polarization degree of photons emitted by InGaN QDs together with heralded polarization direction reveals a promising potential for the direct generation of linearly-polarized photons by site-controlled InGaN QDs.
  •  
6.
  • Höglund, Linda, 1974- (författare)
  • Growth and characterisation of InGaAs-based quantum dots-in-a-well infrared photodetectors
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents results from the development of quantum dot (QD) based infrared photodetectors (IPs). The studies include epitaxial growth of QDs, investigations of the structural, optical and electronic properties of QD-based material as well as characterisation of the resulting components.Metal-organic vapour phase epitaxy is used for growth of self-assembled indium arsenide (InAs) QDs on gallium arsenide (GaAs) substrates. Through characterisation by atomic force microscopy, the correlation between size distribution and density of quantum dots and different growth parameters, such as temperature, InAs deposition time and V/III-ratio (ratio between group V and group III species) is achieved. The V/III-ratio is identified as the most important parameter in finding the right growth conditions for QDs. A route towards optimisation of the dot size distribution through successive variations of the growth parameters is presented.The QD layers are inserted in In0.15Ga0.85As/GaAs quantum wells (QWs), forming so-called dots-in-a-well (DWELL) structures. These structures are used to fabricate IPs, primarily for detection in the long wavelength infrared region (LWIR, 8-14 μm).The electron energy level schemes of the DWELL structures are revealed by a combination of different experimental techniques. From Fourier transform photoluminescence (FTPL) and FTPL excitation (FTPLE) measurements the energy level schemes of the DWELL structures are deduced. Additional information on the energy level schemes is obtained from tunneling capacitance measurements and the polarization dependence studies of the interband transitions. From tunneling capacitance measurements, the QD electron energy level separation is confirmed to be 40-50 meV and from the polarization dependence measurements, the heavy hole character of the upper hole states are revealed.Further characterisation of the IPs, by interband and intersubband photocurrent measurements as well as dark current measurements, is performed. By comparing the deduced energy level scheme of the DWELL structure and the results of the intersubband photocurrent measurements, the origin of the photocurrent is determined. The main intersubband transition contributing to the photocurrent is identified as the QD ground state to a QW excited state transition. Optical pumping is employed to gain information on the origin of an additional photocurrent peak observed only at temperatures below 60 K. By pumping resonantly with transitions associated with certain quantum dot energy levels, this photocurrent peak is identified as an intersubband transition emanating from the quantum dot excited state. Furthermore, the detector response is increased by a factor of 10, when using simultaneous optical pumping into the quantum dots states, due to the increasing electron population created by the pumping. In this way, the potentially achievable responsivity of the detector is predicted to be 250 mA/W.Significant variations of photocurrent and dark currents are observed, when bias and temperature are used as variable parameters. The strong bias and temperature dependence of the photocurrent is attributed to the escape route from the final state in the QW, which is limited by tunneling through the triangular barrier. Also the significant bias and temperature dependence of the dark current could be explained in terms of the strong variation of the escape probability from different energy states in the DWELL structure, as revealed by interband photocurrent measurements. These results are important for the future optimisation of the DWELL IP.Tuning of the detection wavelength within the LWIR region is achieved by means of a varying bias across the DWELL structure. By positioning the InAs quantum dot layer asymmetrically in a 8 nm wide In0.15Ga0.85As/GaAs quantum well, a step-wise shift in the detection wavelength from 8.4 to 10.3 μm could be achieved by varying the magnitude and polarity of the applied bias. These tuning properties could be essential for applications such as odulators and dual-colour infrared detection.
  •  
7.
  • Larsson, Arvid, 1979- (författare)
  • Optical spectroscopy of InGaAs quantum dots
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work presented in this thesis deals with optical studies of semiconductor quantum dots (QDs) in the InGaAs material system. It is shown that for self-assembled InAs QDs, the interaction with the surrounding GaAs barrier and the InAs wetting layer (WL) in particular, has a very large impact on their optical properties.The ability to control the charge state of individual QDs is demonstrated and attributed to a modulation in the carrier transport dynamics in the WL. After photo-excitation of carriers (electrons and holes) in the barrier, they will migrate in the sample and with a certain probability become captured into a QD. During this migration, the carriers can be affected by exerting them to an external magnetic field or by altering the temperature.An external magnetic field applied perpendicular to the carrier transport direction will lead to a decrease in the carrier drift velocity since their trajectories are bent, and at sufficiently high field strength become circular. In turn, this decreases the probability for the carriers to reach the QD since the probability for the carriers to get trapped in WL localizing potentials increases. An elevated temperature leads to an increased escape rate out of these potentials and again increases the flow of carriers towards the QD. These effects have significantly different strengths for electrons and holes due to the large difference in their respective masses and therefore it constitutes a way to control the supply of charges to the QD.Another effect of the different capture probabilities for electrons and holes into a QD that is explored is the ability to achieve spin polarization of the neutral exciton (X0). It has been concluded frequently in the literature that X0 cannot maintain its spin without application of an external magnetic field, due to the anisotropic electron – hole exchange interaction (AEI). In our studies, we show that at certain excitation conditions, the AEI can be by-passed since an electron is captured faster than a hole into a QD. The result is that the electron will populate the QD solely for a certain time window, before the hole is captured. During this time window and at polarized excitation, which creates spin polarized carriers, the electron can polarize the QD nuclei. In this way, a nuclear magnetic field is built up with a magnitude as high as ~ 1.5 T. This field will stabilize the X0 spin in a similar manner as an external magnetic field would. The build-up time for this nuclear field was determined to be ~ 10 ms and the polarization degree achieved for X0 is ~ 60 %.In contrast to the case of X0, the AEI is naturally cancelled for the negatively charged exciton (X-) and the positively charged exciton (X+) complexes. This is due to the fact that the electron (hole) spin is paired off in case of X- (X+).  Accordingly, an even higher polarization degree (~ 73 %) is measured for the positively charged exciton.In a different study, pyramidal QD structures were employed. In contrast to fabrication of self-assembled QDs, the position of QDs can be controlled in these samples as they are grown in inverted pyramids that are etched into a substrate. After sample processing, the result is free-standing AlGaAs pyramids with InGaAs QDs inside. Due to the pyramidal shape of these structures, the light extraction is considerably enhanced which opens up possibilities to study processes un-resolvable in self-assembled QDs. This has allowed studies of Auger-like shake-up processes of holes in single QDs. Normally, after radiative recombination of X+, the QD is populated with a ground state hole. However, at recombination, a fraction of the energy can be transferred to the hole so that it afterwards occupies an excited state instead. This process is detected experimentally as a red-shifted luminescence satellite peak with an intensity on the order of ~ 1/1000 of the main X+ peak intensity. The identification of the satellite peak is based on its intensity correlation with the X+ peak, photoluminescence excitation measurements and on magnetic field measurements.
  •  
8.
  • Lundskog, Anders (författare)
  • Controlled growth of hexagonal GaN pyramids and InGaN QDs
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gallium-nitride (GaN) and its related alloys are direct band gap semiconductors, with a wide variety of applications. The white light emitting diode (LED) is of particular importance as it is expected to replace energy inefficient light bulb and hazardous incandescent lamps used today. However, today’s planar hetero epitaxial grown LEDs  structures contain an unavoidable number of dislocations, which serves as non-radiative recombination centers. The dislocations harm the luminous efficiency of the LEDs and generate additional heat. Pseudomorphically grown quantum dots (QDs) are expected to be dislocation free thus the injected carriers captured by the QDs essentially recombine radiatively since the dislocations remain outside the QD. Furthermore the continuous character of the density of states in bulk materials is redistributed when the size of the dot is reduced within the Bohr radius of the material. Fully discret energy levels are eventually reached, which offers additional control of the optical properties. The Coulomb interaction between the confined carriers also has influence on the emission energy of the recombining carriers, which opens up the possibility of manufacturing novel light sources such as the single photon emitter. Single photon emitters are essential building blocks for quantum cryptography and teleportation applications.The main contribution of the present work is the investigation of growth and characterization of sitecontrolled indium-gallium-nitride QDs embedded in GaN matrixes. The goal has been to demonstrate the ability to grow site-controlled InGaN QDs at the apex of hexagonal GaN pyramids in a controlled way using hot-wall metal organic chemical vapor deposition (MOCVD). Strong emphasis was set on the controlled growth of InGaN QDs. For example the growth of a single InGaN QD located at the apex of hexagonal GaN pyramids with tunable emission energy, the QD emission energy impact on the mask design, and a novel approach for the growth of InGaN QDs with polarization deterministic photon vectors were reported. The thesis is mainly based on experimental investigations by secondary electron microscope (SEM), micro photo-luminescence (μPL), and scanning transition electron microscopy ((S)TEM) characterization techniques.In Paper 1 and 2, we present the growth of symmetric GaN hexagonal pyramids which served as template for the InGaN QDs grown. In paper 1, it was concluded that the selective area growth (SAG) of hexagonal GaN pyramids by MOCVD through symmetric openings in a SIN mask roughly can be divided in two regimes where either the pyramid expands laterally or not. When the pyramid expanded laterally the resulting pyramid apex became (0001) truncated even after prolonged growth times. Lateral expansion also had major impact on the pyramid-to-pyramid uniformity. In paper 2, the MOCVD process parameter impact on the pyramid morphology was investigated. By tuning the growth temperature, the ammonia, and TMGa-flows a self limited pyramid structure with only {1101} facets visible was achieved. The presence of the {1101}, {1102}, and {1100} facets were discussed from surface stabilities under various growth conditions.Paper 3 and 4 concern the growth of InGaN QDs located at the apex of hexagonal GaN pyramids. In paper 3, we showed that it is possible to grow single QDs at the apex of hexagonal pyramids with emission line widths in the Ångström range. The QD emission energy was demonstrated to be tunable by the growth temperature. Basic spectroscopy data is also presented on a single QD in paper 3. In paper 4, the growth mechanisms of the QDs presented in paper 3 are presented. We concluded that (0001) truncated GaN pyramid base initiated the growth of InGaN QDs which gave rise to narrow luminescence peaks in the μPL spectra.In paper 5, the QD emission energy impact of the mask design was investigated. To our big surprise the QD emission energy increased with increasing pyramid pitch while the emission energy of the InGaN quantum wells located on the {1101} facets of the pyramids energetically shifted towards lower energies. The energy shift at the apex was found to be associated with the (0001) truncation diameter of the underlying GaN pyramid since no energy shift was observed for (0001) truncated pyramids with truncation diameters larger than 100 nm.In paper 6, the symmetry of the GaN pyramids were intentionally broken through the introduction of elongated openings in the SiN mask (symmetric openings was used in the previous five papers). The emission polarization vectors of the subsequently grown InGaN QDs were deterministically linked to the in-plane orientation of the pyramid it was nucleated upon, implying that the QDs inhibit an inplane anisotropy directly inherited from the pyramid template.Finally, paper 7 describes a hot-wall MOCVD reactor improvement by inserting insulating pyrolytic boron-nitride (PBN) stripes in the growth chamber. By doing this, we have completely eliminated the arcing problem between different susceptor parts. As a consequence, the reactor gained run-to-run reproducibility. Growth of state of the art advanced aluminum-gallium-nitride high electron mobility transistor structures on a 100 mm wafer with electron mobility above 2000 Vs/cm2 was demonstrated by the improved process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy