SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:0346 6612 ;pers:(Ahlm Clas 1956)"

Sökning: L4X0:0346 6612 > Ahlm Clas 1956

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dernstedt, Andy, 1993- (författare)
  • Life and death of human B cells in health and disease
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • B cells provide one of the key mechanisms of immunological memory, which is theproduction of neutralising antibodies. How B cells respond to infections and vaccinationgives clues to how the development of the immunological memory is facilitated, and canthus lead to a deeper understanding of why the immune system sometimesmalfunctions. This thesis focuses on the human B cell responses in three differentsettings: Acute viral infection, mechanisms involved in germinal centre responses, andvaccination upon interrupted B cell depletion therapy in patients with multiple sclerosis(MS). We have found that during acute Puumala-orthohantavirus (PUUV) infection, Bcells activate on a large scale and derive a phenotype similar to previous observations inautoimmune diseases and chronic infections. Patients with PUUV infection also haddecreased expression of the complement regulatory protein Decay-Accelerating Factor(DAF) at an early stage in the disease. Here, we hypothesised that this might be a resultof a robust B cell response, and therefore we continued to assess B cells at the peripheralsites of their maturation. We found that B cells downregulated the complementinhibitory protein during the germinal centre reaction, which also primed the cells forphagocytosis. This finding shed light to the mechanisms that control B cell homeostasis.Finally, we assessed the B cell responses towards vaccination in patients with MS afterinterruption of their B cell depletion therapy. Here we showed that the patients yieldedexpansion of vaccination-specific memory B cells. However, these memory B cells didnot comprise expansion of DAFlo cells, in contrast to the non-MS control individuals.We speculated that the B cell depletion might have an impact on the formation of B cellmemory after interrupted treatment. Taken together, this thesis contributes to theoverall understanding of the life cycle of B cells, in the context of infection, vaccination,and homeostasis.
  •  
2.
  • Islam, Koushikul, 1985- (författare)
  • Identification and evaluation of antiviral compounds targeting Rift Valley fever virus
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Rift Valley fever virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease Rift Valley fever (RVF). RVFV causes significant morbidity and mortality in humans and livestock throughout Africa and the Arabian Peninsula. RVFV is an emerging virus and is capable of infecting a broad range of mosquito species distributed around the world, so it poses a potential threat globally. A wide range of livestock animals (e.g. sheep, goats, cows, and camels) and some wild animals become highly affected by RVFV. In humans, RVFV infection presents as an acute self-limiting febrile illness that may lead to more severe hemorrhagic fever and encephalitis. The severity of the disease is mostly dependent on age and the species of mammal, but other factors are also important.There are no licensed RVFV vaccines for humans, and there is a lack of effective antiviral drugs. Moreover, due to the severe pathogenicity, higher-level facilities are needed―biosafety level 3 (BSL-3) or more―to work with RVFV, which makes antiviral drug development more challenging. Because RVFV causes severe disease in Africa and the Arabian Peninsula, and has the potential to spread globally, it is essential that safe, efficient antiviral drugs against this virus are developed.The previously reported antiviral compound benzavir-2 inhibits the replication of several DNA viruses, i.e. human adenoviruses, herpes simplex virus (HSV) type 1, and HSV type 2, indicating a broadranging activity. We wanted to evaluate whether benzavir-2 had an effect against the RNA virus RVFV. For these and subsequent studies, we used a recombinant, modified RVFV strain with a deleted NSs gene, which was replaced by a reporter gene (rRVFVΔNSs::Katushka), enabling the studies to be conducted under BSL-2 conditions. The NSs gene is the main virulence factor for RVFV and without it, RVFV become less pathogenic. The reporter gene made it possible for us to quantify infection with the help of the red fluorescent protein. We found that benzavir-2 effectively inhibited RVFV infection in cell culture at an effective concentration showing 50% inhibition (EC50) of 0.6 μM. Benzavir-2 also inhibited the production of progeny virus. When we studied the pharmacokinetic properties, we found that benzavir-2 had good in vitro solubility, permeability, and metabolic stability. When we investigated the oral bioavailability in mice by administering benzavir-2 in peanut butter pellets, high systemic distribution was observed without any adverse toxic effects. Benzavir-2 thus inhibited RVFV infection in cell culture and showed excellent pharmacokinetic properties, suggesting the possibility of evaluating its effectiveness in an animal model. Since benzavir-2 has a broad effect against both RNA and DNA viruses, we speculated that the antiviral mechanism affects cellular targets.We also wanted to explore a large number of small chemical compounds with unknown properties and identify any anti-RVFV activities. Thus, we developed a whole-cell-based high-throughput reporter-based assay, and screened 28,437 small chemical compounds. The assay was established after optimization of several parameters. After primary and secondary screening, we identified 63 compounds that inhibited RVFV infection by 60% at a concentration of 3.12 μM and showed ≥ 50% cell viability at 25 μM. After a dose-dependent screening of these 63 compounds, several compounds were identified with highly efficient anti-RVFV properties. Finally, N1-(2-(biphenyl-4-yloxy)ethyl)propane-1,3-diamine (compound 1) was selected as the lead compound. We performed a structure-activity relationship (SAR) analysis of compound 1 by replacing and changing component after component of the chemical compound to see how this affected the antiviral activity. After the SAR analysis, the antiviral activity did not change, but we could improve the cytotoxicity profile. Our studies suggested that the improved compound, 13a, might be targeting the early phase of the RVFV lifecycle.In conclusion, we developed an efficient and reliable screening method that creates possibilities for discovering and developing antivirals against RVFV under BSL-2 conditions. We also identified several chemical compounds with anti-RVFV activities, which might lead to development of therapies for RVFV infection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy